|   | 
Details
   web
Records
Author (up) Proshutinsky, A.; Dukhovskoy, D.; Timmermans, M.-L.; Krishfield, R.; Bamber, J.L.
Title Arctic circulation regimes Type $loc['typeJournal Article']
Year 2015 Publication Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences Abbreviated Journal Philos Trans A Math Phys Eng Sci
Volume 373 Issue 2052 Pages
Keywords arctic climate variability; circulation regimes; freshwater and heat content
Abstract Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability.
Address School of Geographical Sciences, University of Bristol, Bristol, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-503X ISBN Medium
Area Expedition Conference
Funding PMID:26347536; PMCID:PMC4607701 Approved $loc['no']
Call Number COAPS @ mfield @ Serial 109
Permanent link to this record
 

 
Author (up) Proshutinsky, A.; Krishfield, R.; Toole, J.M.; Timmermans, M.-L.; Williams, W.; Zimmermann, S.; Yamamoto-Kawai, M.; Armitage, T.W.K.; Dukhovskoy, D.; Golubeva, E.; Manucharyan, G.E.; Platov, G.; Watanabe, E.; Kikuchi, T.; Nishino, S.; Itoh, M.; Kang, S.-H.; Cho, K.-H.; Tateyama, K.; Zhao, J.
Title Analysis of the Beaufort Gyre Freshwater Content in 2003-2018 Type $loc['typeJournal Article']
Year 2019 Publication Abbreviated Journal J Geophys Res Oceans
Volume 124 Issue 12 Pages
Keywords Arctic Ocean; Beaufort Gyre; circulation; climate change; freshwater balance; modeling
Abstract Hydrographic data collected from research cruises, bottom-anchored moorings, drifting Ice-Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km(3) of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997-2018) accompanied by sea ice melt, a wind-forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice-Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year-to-year variability, or the more subtle interannual variations.
Address Physical Oceanography Laboratory Ocean University of China, Qingdao China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding strtoupper('3').strtolower('2055432'); strtoupper('P').strtolower('MC7003849') Approved $loc['no']
Call Number COAPS @ user @ Serial 1097
Permanent link to this record
 

 
Author (up) Proshutinsky, A.; Krishfield, R.; Toole, J.M.; Timmermans, M.-L.; Williams, W.; Zimmermann, S.; Yamamoto-Kawai, M.; Armitage, T.W.K.; Dukhovskoy, D.; Golubeva, E.; Manucharyan, G.E.; Platov, G.; Watanabe, E.; Kikuchi, T.; Nishino, S.; Itoh, M.; Kang, S.-H.; Cho, K.-H.; Tateyama, K.; Zhao, J.
Title Analysis of the Beaufort Gyre Freshwater Content in 2003-2018 Type $loc['typeJournal Article']
Year 2019 Publication Abbreviated Journal J Geophys Res Oceans
Volume 124 Issue 12 Pages 9658-9689
Keywords Arctic Ocean; Beaufort Gyre; circulation; climate change; freshwater balance; modeling
Abstract Hydrographic data collected from research cruises, bottom-anchored moorings, drifting Ice-Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km(3) of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997-2018) accompanied by sea ice melt, a wind-forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice-Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year-to-year variability, or the more subtle interannual variations.
Address Physical Oceanography Laboratory Ocean University of China, Qingdao China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding strtoupper('3').strtolower('2055432'); strtoupper('P').strtolower('MC7003849') Approved $loc['no']
Call Number COAPS @ user @ Serial 1102
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2021 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)