Records |
Author  |
Misra, V. |
Title |
The NOAA MAPP Climate Prediction Task Force |
Type |
$loc['typeMagazine Article'] |
Year |
2013 |
Publication |
U.S. CLIVAR Variations |
Abbreviated Journal |
|
Volume |
11 |
Issue |
2 |
Pages |
27-28 |
Keywords |
|
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
222 |
Permanent link to this record |
|
|
|
Author  |
Misra, V. |
Title |
Interaction of interannual and diurnal variations over equatorial Africa |
Type |
$loc['typeJournal Article'] |
Year |
2010 |
Publication |
Journal of Geophysical Research |
Abbreviated Journal |
J. Geophys. Res. |
Volume |
115 |
Issue |
D1 |
Pages |
|
Keywords |
|
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0148-0227 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
354 |
Permanent link to this record |
|
|
|
Author  |
Misra, V. |
Title |
Harvesting model uncertainty for the simulation of interannual variability |
Type |
$loc['typeJournal Article'] |
Year |
2009 |
Publication |
Journal of Geophysical Research |
Abbreviated Journal |
J. Geophys. Res. |
Volume |
114 |
Issue |
D16 |
Pages |
|
Keywords |
|
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0148-0227 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
385 |
Permanent link to this record |
|
|
|
Author  |
Misra, V. |
Title |
The Amplification of the ENSO Forcing over Equatorial Amazon |
Type |
$loc['typeJournal Article'] |
Year |
2009 |
Publication |
Journal of Hydrometeorology |
Abbreviated Journal |
J. Hydrometeor |
Volume |
10 |
Issue |
6 |
Pages |
1561-1568 |
Keywords |
|
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1525-755X |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
380 |
Permanent link to this record |
|
|
|
Author  |
Misra, V. |
Title |
Coupled Air, Sea, and Land Interactions of the South American Monsoon |
Type |
$loc['typeJournal Article'] |
Year |
2008 |
Publication |
Journal of Climate |
Abbreviated Journal |
J. Climate |
Volume |
21 |
Issue |
23 |
Pages |
6389-6403 |
Keywords |
|
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0894-8755 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
404 |
Permanent link to this record |
|
|
|
Author  |
Misra, V.; Bastola, S. |
Title |
Reconciling droughts and landfalling tropical cyclones in the Southeastern United States |
Type |
$loc['typeJournal Article'] |
Year |
2016 |
Publication |
Climate Dynamics |
Abbreviated Journal |
Clim Dyn |
Volume |
46 |
Issue |
3-4 |
Pages |
1277-1286 |
Keywords |
Atlantic hurricanes; Droughts; Teleconnection; Hydrology |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0930-7575 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
NOAA, USGS |
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
46 |
Permanent link to this record |
|
|
|
Author  |
Misra, V.; Bhardwaj, A. |
Title |
The impact of varying seasonal lengths of the rainy seasons of India on its teleconnections with tropical sea surface temperatures |
Type |
$loc['typeJournal Article'] |
Year |
2020 |
Publication |
Atmospheric Science Letters |
Abbreviated Journal |
Atmos Sci Lett |
Volume |
21 |
Issue |
3 |
Pages |
9658-9689 |
Keywords |
|
Abstract |
We present in this paper the interannual variability of seasonal temperature and rainfall in the Indian meteorological subdivisions (IMS) for boreal winter and summer seasons that take in to account the varying length of the seasons. Our study reveals that accounting for the variations in the length of the seasons produces stronger teleconnections between the seasonal anomalies of surface temperature and rainfall over India with corresponding sea surface temperature anomalies of the tropical Oceans (especially over the northern Indian and the equatorial Pacific Oceans) compared to the same teleconnections from fixed length seasons over the IMS. It should be noted that the IMS show significant spatial heterogeneity in these teleconnections. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1530-261X |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ user @ |
Serial |
1100 |
Permanent link to this record |
|
|
|
Author  |
Misra, V.; Bhardwaj, A. |
Title |
Understanding the seasonal variations of Peninsular Florida |
Type |
$loc['typeJournal Article'] |
Year |
2019 |
Publication |
Climate Dynamics |
Abbreviated Journal |
Clim Dyn |
Volume |
54 |
Issue |
3-4 |
Pages |
1873-1885 |
Keywords |
|
Abstract |
This study accounts for varying lengths of the seasons, which turns out to be an important consideration of climate variability over Peninsular Florida (PF). We introduce an objective definition for the onset and demise of the winter season over relatively homogenous regions within PF: North Florida (NF), Central Florida (CF), Southeast Florida (SeF), and Southwest Florida (SwF). We first define the summer season based on precipitation, and follow this by defining the winter season using surface temperature analysis. As a consequence, of these definitions of the summer and the winter seasons, the lengths of the transition seasons of spring and fall also vary from year to year. The onset date variations have a robust relationship with the corresponding seasonal length anomalies across PF for all seasons. Furthermore, with some exceptions, the onset date variations are associated with corresponding seasonal rainfall and surface temperature anomalies, which makes monitoring the onset date of the seasons a potentially useful predictor of the following evolution of the season. In many of these instances the demise date variations of the season also have a bearing on the preceding seasonal length and seasonal rainfall anomalies. However, we find that variations of the onset and the demise dates are independent of each other across PF and in all seasons. We also find that the iconic ENSO teleconnection over PF is exclusive to the seasonal rainfall anomalies and it does not affect the variations in the length of the winter season. Given these findings, we strongly suggest monitoring and predicting the variations in the lengths of the seasons over PF as it is not only an important metric of climate variability but also beneficial to reduce a variety of risks of impact of anomalous seasonal climate variations. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0930-7575 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ user @ |
Serial |
1098 |
Permanent link to this record |
|
|
|
Author  |
Misra, V.; Bhardwaj, A. |
Title |
Defining the Northeast Monsoon of India |
Type |
$loc['typeJournal Article'] |
Year |
2019 |
Publication |
Monthly Weather Review |
Abbreviated Journal |
Mon. Wea. Rev. |
Volume |
147 |
Issue |
3 |
Pages |
791-807 |
Keywords |
Indian Summer Monsoon, intraseasonal,Climate models, variability, NEM, rainfall |
Abstract |
This study introduces an objective definition for onset and demise of the Northeast Indian Monsoon (NEM). The definition is based on the land surface temperature analysis over the Indian subcontinent. It is diagnosed from the inflection points in the daily anomaly cumulative curve of the area-averaged surface temperature over the provinces of Andhra Pradesh, Rayalseema, and Tamil Nadu located in the southeastern part of India. Per this definition, the climatological onset and demise dates of the NEM season are 6 November and 13 March, respectively. The composite evolution of the seasonal cycle of 850hPa winds, surface wind stress, surface ocean currents, and upper ocean heat content suggest a seasonal shift around the time of the diagnosed onset and demise dates of the NEM season. The interannual variations indicate onset date variations have a larger impact than demise date variations on the seasonal length, seasonal anomalies of rainfall, and surface temperature of the NEM. Furthermore, it is shown that warm El Niño�Southern Oscillation (ENSO) episodes are associated with excess seasonal rainfall, warm seasonal land surface temperature anomalies, and reduced lengths of the NEM season. Likewise, cold ENSO episodes are likely to be related to seasonal deficit rainfall anomalies, cold land surface temperature anomalies, and increased lengths of the NEM season. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0027-0644 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ rl18 @ |
Serial |
999 |
Permanent link to this record |
|
|
|
Author  |
Misra, V.; Bhardwaj, A.; Mishra, A. |
Title |
Local onset and demise of the Indian summer monsoon |
Type |
$loc['typeJournal Article'] |
Year |
2018 |
Publication |
Climate Dynamics |
Abbreviated Journal |
|
Volume |
51 |
Issue |
5-6 |
Pages |
1609-1622 |
Keywords |
Indian monsoon; ENSO; Onset of monsoon |
Abstract |
This paper introduces an objective definition of local onset and demise of the Indian summer monsoon (ISM) at the native grid of the Indian Meteorological Department's rainfall analysis based on more than 100 years of rain gauge observations. The variability of the local onset/demise of the ISM is shown to be closely associated with the All India averaged rainfall onset/demise. This association is consistent with the corresponding evolution of the slow large-scale reversals of upper air and ocean variables that raise the hope of predictability of local onset and demise of the ISM. The local onset/demise of the ISM also show robust internannual variations associated with El Nino and the Southern Oscillation and Indian Ocean dipole mode. It is also shown that the early monsoon rains over northeast India has a predictive potential for the following seasonal anomalies of rainfall and seasonal length of the monsoon over rest of India. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
360 |
Permanent link to this record |