|   | 
Details
   web
Records
Author Huang, T.; Armstrong, E.M.; Bourassa, M.A.; Cram, T.A.; Elya, J.; Greguska, F.; Jacob, J.C.; Ji, Z.; Jiang, Y.; Li, Y.; Quach, N.T.; McGibbney, L.J.; Smith, S.R.; Wilson, B.D.; Worley S.J.; Yang, C.
Title An Integrated Data Analytics Platform Type $loc['typeJournal Article']
Year 2019 Publication Marine Science Abbreviated Journal Mar. Sci.
Volume 6 Issue Pages
Keywords big data, Cloud computing, Ocean science, data analysis, Matchup, anomaly detection, open source
Abstract An Integrated Science Data Analytics Platform is an environment that enables the confluence of resources for scientific investigation. It harmonizes data, tools and computational resources to enable the research community to focus on the investigation rather than spending time on security, data preparation, management, etc. OceanWorks is a NASA technology integration project to establish a cloud-based Integrated Ocean Science Data Analytics Platform for big ocean science at NASA�s Physical Oceanography Distributed Active Archive Center (PO.DAAC) for big ocean science. It focuses on advancement and maturity by bringing together several NASA open-source, big data projects for parallel analytics, anomaly detection, in situ to satellite data matchup, quality-screened data subsetting, search relevancy, and data discovery.

Our communities are relying on data available through distributed data centers to conduct their research. In typical investigations, scientists would (1) search for data, (2) evaluate the relevance of that data, (3) download it, and (4) then apply algorithms to identify trends, anomalies, or other attributes of the data. Such a workflow cannot scale if the research involves a massive amount of data or multi-variate measurements. With the upcoming NASA Surface Water and Ocean Topography (SWOT) mission expected to produce over 20PB of observational data during its 3-year nominal mission, the volume of data will challenge all existing Earth Science data archival, distribution and analysis paradigms. This paper discusses how OceanWorks enhances the analysis of physical ocean data where the computation is done on an elastic cloud platform next to the archive to deliver fast, web-accessible services for working with oceanographic measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1038
Permanent link to this record
 

 
Author Kent, E.C.; Rayner, N.A.; Berry, D.I.; Eastman, R.; Grigorieva, V.G.; Huang, B.; Kennedy, J.J.; Smith, S.R.; Willett, K.M.
Title Observing Requirements for Long-Term Climate Records at the Ocean Surface Type $loc['typeJournal Article']
Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.
Volume 6 Issue Pages 441
Keywords
Abstract Observations of conditions at the ocean surface have been made for centuries, contributing to some of the longest instrumental records of climate change. Most prominent is the climate data record (CDR) of sea surface temperature (SST), which is itself essential to the majority of activities in climate science and climate service provision. A much wider range of surface marine observations is available however, providing a rich source of data on past climate. We present a general error model describing the characteristics of observations used for the construction of climate records, illustrating the importance of multi-variate records with rich metadata for reducing uncertainty in CDRs. We describe the data and metadata requirements for the construction of stable, multi-century marine CDRs for variables important for describing the changing climate: SST, mean sea level pressure, air temperature, humidity, winds, clouds, and waves. Available sources of surface marine data are reviewed in the context of the error model. We outline the need for a range of complementary observations, including very high quality observations at a limited number of locations and also observations that sample more broadly but with greater uncertainty. We describe how high-resolution modern records, particularly those of high-quality, can help to improve the quality of observations throughout the historical record. We recommend the extension of internationally-coordinated data management and curation to observation types that do not have a primary focus of the construction of climate records. Also recommended is reprocessing the existing surface marine climate archive to improve and quantify data and metadata quality and homogeneity. We also recommend the expansion of observations from research vessels and high quality moorings, routine observations from ships and from data and metadata rescue. Other priorities include: field evaluation of sensors; resources for the process of establishing user requirements and determining whether requirements are being met; and research to estimate uncertainty, quantify biases and to improve methods of construction of CDRs. The requirements developed in this paper encompass specific actions involving a variety of stakeholders, including funding agencies, scientists, data managers, observing network operators, satellite agencies, and international co-ordination bodies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-7745 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1040
Permanent link to this record
 

 
Author Freeman, E.; Kent, E.C.; Brohan, P.; Cram, T.; Gates, L.; Huang, B.; Liu, C.; Smith, S.R.; Worley, S.J.; Zhang, H.-M.
Title The International Comprehensive Ocean-Atmosphere Data Set – Meeting Users Needs and Future Priorities Type $loc['typeJournal Article']
Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.
Volume 6 Issue Pages 435
Keywords
Abstract The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) is a collection and archive of in situ marine observations, which has been developed over several decades as an international project and recently guided by formal international partnerships and the ICOADS Steering Committee. ICOADS contains observations from many different observing systems encompassing the evolution of measurement technology since the 18th century. ICOADS provides an integrated source of observations for a range of applications including research and climate monitoring, and forms the main marine in situ surface data source, e.g., near-surface ocean observations and lower atmospheric marine-meteorological observations from buoys, ships, coastal stations, and oceanographic sensors, for oceanic and atmospheric research and reanalysis. ICOADS has developed ways to incorporate user and reanalyses feedback information associated with permanent unique identifiers and is also the main repository for data that have been rescued from ships’ logbooks and other marine data digitization activities. ICOADS has been adopted widely because it provides convenient access to a range of observation types, globally, and through the entire marine instrumental record. ICOADS has provided a secure home for such observations for decades. Because of the increased volume of observations, particularly those available in near-real-time, and an expansion of their diversity, the ICOADS processing system now requires extensive modernization. Based on user feedback, we will outline the improvements that are required, the challenges to their implementation, and the benefits of upgrading this important and diverse marine archive and distribution activity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-7745 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1041
Permanent link to this record
 

 
Author Smith, S.R.; Alory, G.; Andersson, A.; Asher, W.; Baker, A.; Berry, D.I.; Drushka, K.; Figurskey, D.; Freeman, E.; Holthus, P.; Jickells, T.; Kleta, H.; Kent, E.C.; Kolodziejczyk, N.; Kramp, M.; Loh, Z.; Poli, P.; Schuster, U.; Steventon, E.; Swart, S.; Tarasova, O.; de la Villéon, L.P.; Vinogradova-Shiffer, N.
Title Ship-Based Contributions to Global Ocean, Weather, and Climate Observing Systems Type $loc['typeJournal Article']
Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.
Volume 6 Issue Pages 434
Keywords
Abstract The role ships play in atmospheric, oceanic, and biogeochemical observations is described with a focus on measurements made near the ocean surface. Ships include merchant and research vessels; cruise liners and ferries; fishing vessels; coast guard, military, and other government-operated ships; yachts; and a growing fleet of automated surface vessels. The present capabilities of ships to measure essential climate/ocean variables and the requirements from a broad community to address operational, commercial, and scientific needs are described. The authors provide a vision to expand observations needed from ships to understand and forecast the exchanges across the ocean–atmosphere interface. The vision addresses (1) recruiting vessels to improve both spatial and temporal sampling, (2) conducting multivariate sampling on ships, (3) raising technology readiness levels of automated shipboard sensors and ship-to-shore data communications, (4) advancing quality evaluation of observations, and (5) developing a unified data management approach for observations and metadata that meet the needs of a diverse user community. Recommendations are made focusing on integrating private and autonomous vessels into the observing system, investing in sensor and communications technology development, developing an integrated data management structure that includes all types of ships, and moving toward a quality evaluation process that will result in a subset of ships being defined as mobile reference ships that will support climate studies. We envision a future where commercial, research, and privately owned vessels are making multivariate observations using a combination of automated and human-observed measurements. All data and metadata will be documented, tracked, evaluated, distributed, and archived to benefit users of marine data. This vision looks at ships as a holistic network, not a set of disparate commercial, research, and/or third-party activities working in isolation, to bring these communities together for the mutual benefit of all.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-7745 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1039
Permanent link to this record
 

 
Author Fairall, C.W., Barnier, B., Berry, D.I, Bourassa, M.A., Bradley, E.F., Clayson, C.A., de Leeuw, G., Drennan, W.M., Gille, S.T., Gulev, S.K., Kent, E.C., McGillis, W.R., Quartly, G.D., Ryabinin, V., Smith, S.R., Weller, R.A., Yelland, M.J. and Zhang, H-M.
Title Observations to Quantify Air-Sea Fluxes and Their Role in Climate Variability and Predictability Type $loc['typeConference Article']
Year 2010 Publication Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society, Vol. 2 Abbreviated Journal
Volume Issue Pages 299-313
Keywords
Abstract
Address
Corporate Author Thesis
Publisher European Space Agency Place of Publication Editor Hall, J., Harrison, D.E. and Stammer, D. (eds.)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding NOAA, COD, NASA, NEWS Approved $loc['no']
Call Number COAPS @ mfield @ Serial 270
Permanent link to this record
 

 
Author Bentamy, A.; Piollé, J.F.; Grouazel, A.; Danielson, R.; Gulev, S.; Paul, F.; Azelmat, H.; Mathieu, P.P.; von Schuckmann, K.; Sathyendranath, S.; Evers-King, H.; Esau, I.; Johannessen, J.A.; Clayson, C.A.; Pinker, R.T.; Grodsky, S.A.; Bourassa, M.; Smith, S.R.; Haines, K.; Valdivieso, M.; Merchant, C.J.; Chapron, B.; Anderson, A.; Hollmann, R.; Josey, S.A.
Title Review and assessment of latent and sensible heat flux accuracy over the global oceans Type $loc['typeJournal Article']
Year 2017 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 201 Issue Pages 196-218
Keywords Ocean Heat Flux; Latent heat flux; Sensible heat flux; Ocean heat content; Scatterometer; Surface wind; Specfic air humidity; OceanSites; Remotely sensed data
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 232
Permanent link to this record
 

 
Author Hughes, P.J.; Bourassa, M.A.; Rolph, J.J.; Smith, S.R.
Title Averaging-Related Biases in Monthly Latent Heat Fluxes Type $loc['typeJournal Article']
Year 2012 Publication Journal of Atmospheric and Oceanic Technology Abbreviated Journal J. Atmos. Oceanic Technol.
Volume 29 Issue 7 Pages 974-986
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0739-0572 ISBN Medium
Area Expedition Conference
Funding NOAA Approved $loc['no']
Call Number COAPS @ mfield @ Serial 246
Permanent link to this record
 

 
Author Smith, S.R.; Brolley, J.; O'Brien, J.J.; Tartaglione, C.A.
Title ENSO's Impact on Regional U.S. Hurricane Activity Type $loc['typeJournal Article']
Year 2007 Publication Journal of Climate Abbreviated Journal J. Climate
Volume 20 Issue 7 Pages 1404-1414
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0894-8755 ISBN Medium
Area Expedition Conference
Funding NOAA, NASA, USDA Approved $loc['no']
Call Number COAPS @ mfield @ Serial 429
Permanent link to this record
 

 
Author Bourassa, M.A.; Romero, R.; Smith, S.R.; O'Brien, J.J.
Title A New FSU Winds Climatology Type $loc['typeJournal Article']
Year 2005 Publication Journal of Climate Abbreviated Journal J. Climate
Volume 18 Issue 17 Pages 3686-3698
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0894-8755 ISBN Medium
Area Expedition Conference
Funding NASA, NOAA, NSF, ONR Approved $loc['no']
Call Number COAPS @ mfield @ Serial 449
Permanent link to this record
 

 
Author Gilford, D.M.; Smith, S.R.; Griffin, M.L.; Arguez, A.
Title Southeastern U.S. Daily Temperature Ranges Associated with the El Niño-Southern Oscillation Type $loc['typeJournal Article']
Year 2013 Publication Journal of Applied Meteorology and Climatology Abbreviated Journal J. Appl. Meteor. Climatol.
Volume 52 Issue 11 Pages 2434-2449
Keywords Climate variability; Climatology; ENSO; Surface temperature; Climate records
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-8424 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 180
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)