Records |
Author  |
Ansong, J.K.; Arbic, B.K.; Simmons, H.L.; Alford, M.H.; Buijsman, M.C.; Timko, P.G.; Richman, J.G.; Shriver, J.F.; Wallcraft, A.J. |
Title |
Geographical Distribution of Diurnal and Semidiurnal Parametric Subharmonic Instability in a Global Ocean Circulation Model |
Type |
$loc['typeJournal Article'] |
Year |
2018 |
Publication |
Journal of Physical Oceanography |
Abbreviated Journal |
J. Phys. Oceanogr. |
Volume |
48 |
Issue |
6 |
Pages |
1409-1431 |
Keywords |
Baroclinic flows; Internal waves; Nonlinear dynamics; Ocean dynamics; Baroclinic models; Ocean models |
Abstract |
The evidence for, baroclinic energetics of, and geographic distribution of parametric subharmonic instability (PSI) arising from both diurnal and semidiurnal tides in a global ocean general circulation model is investigated using 1/12.5° and 1/25° simulations that are forced by both atmospheric analysis fields and the astronomical tidal potential. The paper examines whether PSI occurs in the model, and whether it accounts for a significant fraction of the tidal baroclinic energy loss. Using energy transfer calculations and bispectral analyses, evidence is found for PSI around the critical latitudes of the tides. The intensity of both diurnal and semidiurnal PSI in the simulations is greatest in the upper ocean, consistent with previous results from idealized simulations, and quickly drops off about 5° from the critical latitudes. The sign of energy transfer depends on location; the transfer is positive (from the tides to subharmonic waves) in some locations and negative in others. The net globally integrated energy transfer is positive in all simulations and is 0.5%�10% of the amount of energy required to close the baroclinic energy budget in the model. The net amount of energy transfer is about an order of magnitude larger in the 1/25° semidiurnal simulation than the 1/12.5° one, implying the dependence of the rate of energy transfer on model resolution. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0022-3670 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ user @ |
Serial |
976 |
Permanent link to this record |
|
|
|
Author  |
Buijsman, M.C.; Ansong, J.K.; Arbic, B.K.; Richman, J.G.; Shriver, J.F.; Timko, P.G.; Wallcraft, A.J.; Whalen, C.B.; Zhao, Z.X. |
Title |
Impact of Parameterized Internal Wave Drag on the Semidiurnal Energy Balance in a Global Ocean Circulation Model |
Type |
$loc['typeJournal Article'] |
Year |
2016 |
Publication |
Journal of Physical Oceanography |
Abbreviated Journal |
J. Phys. Oceanogr. |
Volume |
46 |
Issue |
5 |
Pages |
1399-1419 |
Keywords |
|
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0022-3670 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
31 |
Permanent link to this record |
|
|
|
Author  |
Luecke, C.A.; Arbic, B.K.; Bassette, S.L.; Richman, J.G.; Shriver, J.F.; Alford, M.H.; Smedstad, O.M.; Timko, P.G.; Trossman, D.S.; Wallcraft, A.J. |
Title |
The Global Mesoscale Eddy Available Potential Energy Field in Models and Observations |
Type |
$loc['typeJournal Article'] |
Year |
2017 |
Publication |
Journal of Geophysical Research: Oceans |
Abbreviated Journal |
J. Geophys. Res. Oceans |
Volume |
122 |
Issue |
11 |
Pages |
9126-9143 |
Keywords |
eddy available potential energy; mesoscale eddies; mixing; model-data comparison; ocean energy reservoirs; Argo |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2169-9275 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
464 |
Permanent link to this record |
|
|
|
Author  |
Luecke, C.A.; Arbic, B.K.; Bassette, S.L.; Richman, J.G.; Shriver, J.F.; Alford, M.H.; Smedstad, O.M.; Timko, P.G.; Trossman, D.S.; Wallcraft, A.J. |
Title |
The Global Mesoscale Eddy Available Potential Energy Field in Models and Observations: GLOBAL LOW-FREQUENCY EDDY APE |
Type |
$loc['typeJournal Article'] |
Year |
2017 |
Publication |
Journal of Geophysical Research: Oceans |
Abbreviated Journal |
J. Geophys. Res. Oceans |
Volume |
122 |
Issue |
11 |
Pages |
9126-9143 |
Keywords |
eddy available potential energy; mesoscale eddies; mixing; model‐ data comparison; ocean energy reservoirs; Argo |
Abstract |
Global maps of the mesoscale eddy available potential energy (EAPE) field at a depth of 500 m are created using potential density anomalies in a high‐resolution 1/12.5° global ocean model. Maps made from both a free‐running simulation and a data‐assimilative reanalysis of the HYbrid Coordinate Ocean Model (HYCOM) are compared with maps made by other researchers from density anomalies in Argo profiles. The HYCOM and Argo maps display similar features, especially in the dominance of western boundary currents. The reanalysis maps match the Argo maps more closely, demonstrating the added value of data assimilation. Global averages of the simulation, reanalysis, and Argo EAPE all agree to within about 10%. The model and Argo EAPE fields are compared to EAPE computed from temperature anomalies in a data set of “moored historical observations” (MHO) in conjunction with buoyancy frequencies computed from a global climatology. The MHO data set allows for an estimate of the EAPE in high‐frequency motions that is aliased into the Argo EAPE values. At MHO locations, 15–32% of the EAPE in the Argo estimates is due to aliased motions having periods of 10 days or less. Spatial averages of EAPE in HYCOM, Argo, and MHO data agree to within 50% at MHO locations, with both model estimates lying within error bars observations. Analysis of the EAPE field in an idealized model, in conjunction with published theory, suggests that much of the scatter seen in comparisons of different EAPE estimates is to be expected given the chaotic, unpredictable nature of mesoscale eddies. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2169-9275 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ rl18 @ |
Serial |
992 |
Permanent link to this record |
|
|
|
Author  |
Timko, P.G.; Arbic, B.K.; Hyder, P.; Richman, J.G.; Zamudio, L.; O'Dea, E.; Wallcraft, A.J.; Shriver, J.F. |
Title |
Assessment of shelf sea tides and tidal mixing fronts in a global ocean model |
Type |
$loc['typeJournal Article'] |
Year |
2019 |
Publication |
Ocean Modelling |
Abbreviated Journal |
Ocean Modelling |
Volume |
136 |
Issue |
|
Pages |
66-84 |
Keywords |
HYCOM; tides; seasonal tidal mixing |
Abstract |
Tidal mixing fronts, which represent boundaries between stratified and tidally mixed waters, are locations of enhanced biological activity. They occur in summer shelf seas when, in the presence of strong tidal currents, mixing due to bottom friction balances buoyancy production due to seasonal heat flux. In this paper we examine the occurrence and fidelity of tidal mixing fronts in shelf seas generated within a global 3-dimensional simulation of the HYbrid Coordinate Ocean Model (HYCOM) that is simultaneously forced by atmospheric fields and the astronomical tidal potential. We perform a first order assessment of shelf sea tides in global HYCOM through comparison of sea surface temperature, sea surface tidal elevations, and tidal currents with observations. HYCOM was tuned to minimize errors in M2 sea surface heights in deep water. Over the global coastal and shelf seas (depths <200 m) the area-weighted root mean square error of the M2 sea surface amplitude in HYCOM represents 35% of the 50 cm root mean squared M2 sea surface amplitude when compared to satellite constrained models TPXO8 and FES2014. HYCOM and the altimeter constrained tidal models TPXO8 and FES2014 exhibit similar skill in reproducing barotropic tidal currents estimated from in-situ current meter observations. Through comparison of a global HYCOM simulation with tidal forcing to a global HYCOM simulation with no tides, and also to previous regional studies of tidal mixing fronts in shelf seas, we demonstrate that HYCOM with embedded tides exhibits quite high skill in reproducing known tidal mixing fronts in shelf seas. Our results indicate that the amount of variability in the location of the tidal mixing fronts in HYCOM, estimated using the Simpson-Hunter parameter, is consistent with previous studies when the differences in the net downward heat flux, on a global scale, are taken into account. We also provide evidence of tidal mixing fronts on the North West Australian Shelf for which we have been unable to find references in the existing scientific literature. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1463-5003 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ user @ |
Serial |
1032 |
Permanent link to this record |
|
|
|
Author  |
Timko, P.G.; Arbic, B.K.; Richman, J.G.; Scott, R.B.; Metzger, E.J.; Wallcraft, A.J. |
Title |
Skill testing a three-dimensional global tide model to historical current meter records |
Type |
$loc['typeJournal Article'] |
Year |
2013 |
Publication |
Journal of Geophysical Research: Oceans |
Abbreviated Journal |
J. Geophys. Res. Oceans |
Volume |
118 |
Issue |
12 |
Pages |
6914-6933 |
Keywords |
global tides; skill test; HYCOM; tidal currents |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2169-9275 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
177 |
Permanent link to this record |
|
|
|
Author  |
Timko, P.G.; Arbic, B.K.; Richman, J.G.; Scott, R.B.; Metzger, E.J.; Wallcraft, A.J. |
Title |
Skill tests of three-dimensional tidal currents in a global ocean model: A look at the North Atlantic |
Type |
$loc['typeJournal Article'] |
Year |
2012 |
Publication |
Journal of Geophysical Research: Oceans |
Abbreviated Journal |
J. Geophys. Res. |
Volume |
117 |
Issue |
C8 |
Pages |
n/a-n/a |
Keywords |
|
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0148-0227 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
242 |
Permanent link to this record |