|   | 
Details
   web
Records
Author (up) Ahern, K.; Bourassa, M.A.; Hart, R.E.; Zhang, J.A.; Rogers, R.F.
Title Observed Kinematic and Thermodynamic Structure in the Hurricane Boundary Layer During Intensity Change Type $loc['typeJournal Article']
Year 2019 Publication Monthly Weather Review Abbreviated Journal Mon. Wea. Rev.
Volume Issue Pages
Keywords
Abstract The axisymmetric structure of the inner-core hurricane boundary layer (BL) during intensification [IN; intensity tendency &#8805; 20 kt (24 h)&#8722;1], weakening [WE; intensity tendency < &#8722;10 kt (24 h)&#8722;1], and steady-state [SS; the remainder] periods are analyzed using composites of GPS dropwindsondes from reconnaissance missions between 1998 and 2015. A total of 3,091 dropsondes were composited for analysis below 2.5 km elevation—1,086 during IN, 1,042 during WE, and 963 during SS. In non-intensifying hurricanes, the lowlevel tangential wind is greater outside the radius of maximum wind (RMW) than for intensifying hurricanes, implying higher inertial stability (I) at those radii for non-intensifying hurricanes. Differences in tangential wind structure (and I) between the groups also imply differences in secondary circulation. The IN radial inflow layer is of nearly equal or greater thickness than nonintensifying groups, and all groups show an inflow maximum just outside the RMW. Non-intensifying hurricanes have stronger inflow outside the eyewall region, likely associated with frictionally forced ascent out of the BL and enhanced subsidence into the BL at radii outside the RMW. Equivalent potential temperatures (&#952;e) and conditional stability are highest inside the RMW of non-intensifying storms, which is potentially related to TC intensity. At greater radii, inflow layer &#952;e is lowest in WE hurricanes, suggesting greater subsidence or more convective downdrafts at those radii compared to IN and SS hurricanes. Comparisons of prior observational and theoretical studies are highlighted, especially those relating BL structure to large-scale vortex structure, convection, and intensity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-0644 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1031
Permanent link to this record
 

 
Author (up) Ahern, Kyle K.
Title Hurricane Boundary Layer Structure during Intensity Change: An Observational and Numerical Analysis Type $loc['typeManuscript']
Year 2019 Publication Florida State University College of Arts and Sciences Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1103
Permanent link to this record
 

 
Author (up) Ajayi, A.; Le Sommer, J.; Chassignet, E.; Molines, J.-M.; Xu, X.; Albert, A.; Cosme, E.
Title Spatial and Temporal Variability of the North Atlantic Eddy Field From Two Kilometric-Resolution Ocean Models Type $loc['typeJournal Article']
Year 2020 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 125 Issue 5 Pages
Keywords submesoscales; fine&#8208; scales; enstrophy; eddies; SWOT
Abstract Ocean circulation is dominated by turbulent geostrophic eddy fields with typical scales ranging from 10 to 300 km. At mesoscales (>50 km), the size of eddy structures varies regionally following the Rossby radius of deformation. The variability of the scale of smaller eddies is not well known due to the limitations in existing numerical simulations and satellite capability. Nevertheless, it is well established that oceanic flows (<50 km) generally exhibit strong seasonality. In this study, we present a basin&#8208;scale analysis of coherent structures down to 10&#8201;km in the North Atlantic Ocean using two submesoscale&#8208;permitting ocean models, a NEMO&#8208;based North Atlantic simulation with a horizontal resolution of 1/60 (NATL60) and an HYCOM&#8208;based Atlantic simulation with a horizontal resolution of 1/50 (HYCOM50). We investigate the spatial and temporal variability of the scale of eddy structures with a particular focus on eddies with scales of 10 to 100&#8201;km, and examine the impact of the seasonality of submesoscale energy on the seasonality and distribution of coherent structures in the North Atlantic. Our results show an overall good agreement between the two models in terms of surface wave number spectra and seasonal variability. The key findings of the paper are that (i) the mean size of ocean eddies show strong seasonality; (ii) this seasonality is associated with an increased population of submesoscale eddies (10&#65533;50&#8201;km) in winter; and (iii) the net release of available potential energy associated with mixed layer instability is responsible for the emergence of the increased population of submesoscale eddies in wintertime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1104
Permanent link to this record
 

 
Author (up) Ali, A.; Christensen, K.H.; Breivik, Ø.; Malila, M.; Raj, R.P.; Bertino, L.; Chassignet, E.P.; Bakhoday-Paskyabi, M.
Title A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans Type $loc['typeJournal Article']
Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 137 Issue Pages 76-97
Keywords Langmuir mixing parameterization Mixed layer depth Sea surface temperature Ocean heat content Stokes penetration depth
Abstract Five different parameterizations of Langmuir turbulence (LT) effect are investigated in a realistic model of the North Atlantic and Arctic using realistic wave forcing from a global wave hindcast. The parameterizations mainly apply an enhancement to the turbulence velocity scale, and/or to the entrainment buoyancy flux in the surface boundary layer. An additional run is also performed with other wave effects to assess the relative importance of Langmuir turbulence, namely the Coriolis-Stokes forcing, Stokes tracer advection and wave-modified momentum fluxes. The default model (without wave effects) underestimates the mixed layer depth in summer and overestimates it at high latitudes in the winter. The results show that adding LT mixing reduces shallow mixed layer depth (MLD) biases, particularly in the subtropics all year-around, and in the Nordic Seas in summer. There is overall a stronger relative impact on the MLD during winter than during summer. In particular, the parameterization with the most vigorous LT effect causes winter MLD increases by more than 50% relative to a control run without Langmuir mixing. On the contrary, the parameterization which assumes LT effects on the entrainment buoyancy flux and accounts for the Stokes penetration depth is able to enhance the mixing in summer more than in winter. This parametrization is also distinct from the others because it restrains the LT mixing in regions of deep MLD biases, so it is the preferred choice for our purpose. The different parameterizations do not change the amplitude or phase of the seasonal cycle of heat content but do influence its long-term trend, which means that the LT can influence the drift of ocean models. The combined impact on water mass properties from the Coriolis-Stokes force, the Stokes drift tracer advection, and the wave-dependent momentum fluxes is negligible compared to the effect from the parameterized Langmuir turbulence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1001
Permanent link to this record
 

 
Author (up) Ali, M.; Singh, N.; Kumar, M.; Zheng, Y.; Bourassa, M.; Kishtawal, C.; Rao, C.
Title Dominant Modes of Upper Ocean Heat Content in the North Indian Ocean Type $loc['typeJournal Article']
Year 2019 Publication Climate Abbreviated Journal Climate
Volume 6 Issue 71 Pages 1 – 8
Keywords
Abstract The thermal energy needed for the development of hurricanes and monsoons as well as any prolonged marine weather event comes from layers in the upper oceans, not just from the thin layer represented by sea surface temperature alone. Ocean layers have different modes of thermal energy variability because of the different time scales of ocean–atmosphere interaction. Although many previous studies have focused on the influence of upper ocean heat content (OHC) on tropical cyclones and monsoons, no study thus far—particularly in the North Indian Ocean (NIO)—has specifically concluded the types of dominant modes in different layers of the ocean. In this study, we examined the dominant modes of variability of OHC of seven layers in the NIO during 1998–2014. We conclude that the thermal variability in the top 50 m of the ocean had statistically significant semiannual and annual modes of variability, while the deeper layers had the annual mode alone. Time series of OHC for the top four layers were analyzed separately for the NIO, Arabian Sea, and Bay of Bengal. For the surface to 50 m layer, the lowest and the highest values of OHC were present in January and May every year, respectively, which was mainly caused by the solar radiation cycle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2225-1154 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1030
Permanent link to this record
 

 
Author (up) Ali, M.M.
Title Is it high time to use ocean mean temperature for monsoon prediction? Type $loc['typeJournal Article']
Year 2020 Publication Atmosphera Abbreviated Journal Atmosphera
Volume Issue Pages
Keywords
Abstract A monsoon is a seasonal reversal in the prevailing wind direction, that is usually initiated by the land sea temperature contrast. The Indian summer monsoon, for example, is triggered when the land gets heated up more than the surrounding sea during the summer creating a pressure gradient between the land and the sea. It is well known that the ocean thermal energy required for fueling monsoon circulations comes from the upper layer of the ocean (e.g. Venugopal et al. 2018). But such amount of energy does not come from the top thin layer represented by sea surface temperature (SST) alone. Nevertheless, often SST does not represent the thermal energy available in the upper ocean, although this parameter has been the only oceanographic input to the cyclone and monsoon atmospheric numerical and statistical models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1116
Permanent link to this record
 

 
Author (up) Ardhuin, F.; Chapron, B.; Maes, C.; Romeiser, R.; Gommenginger, C.; Cravatte, S.; Morrow, R.; Donlon, C.; Bourassa, M.
Title Satellite Doppler observations for the motions of the oceans Type $loc['typeJournal Article']
Year 2019 Publication Bulletin of the American Meteorological Society Abbreviated Journal Bull. Amer. Meteor. Soc.
Volume Issue Pages
Keywords
Abstract Satellite remote sensing has revolutionized oceanography, starting from sea surface temperature, ocean color, sea level, winds, waves, and the recent addition of sea surface salinity, providing a global view of upper ocean processes. The possible addition of a direct measurement of surface velocities related to currents, winds and waves opens great opportunities for research and applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-0007 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1025
Permanent link to this record
 

 
Author (up) Armstrong, E. M.; Bourassa, M. A.; Cram, T.; Elya, J. L.; Greguska, F. R., III; Huang, T.; Jacob, J. C.; Ji, Z.; Jiang, Y.; Li, Y.; McGibbney, L. J.; Quach, N.; Smith, S. R.; Tsontos, V. M.; Wilson, B. D.; Worley, S. J.; Yang, C. P.
Title An information technology foundation for fostering interdisciplinary oceanographic research and analysis Type $loc['typeAbstract']
Year 2018 Publication American Geophysical Union Abbreviated Journal AGU
Volume Fall Meeting Issue Pages
Keywords 1914 Data mining, INFORMATICSDE: 4805 Biogeochemical cycles, processes, and modeling, OCEANOGRAPHY: BIOLOGICAL AND CHEMICALDE: 4273 Physical and biogeochemical interactions, OCEANOGRAPHY: GENERALDE: 4504 Air/sea interactions, OCEANOGRAPHY: PHYSICAL
Abstract Before complex analysis of oceanographic or any earth science data can occur, it must be placed in the proper domain of computing and software resources. In the past this was nearly always the scientist's personal computer or institutional computer servers. The problem with this approach is that it is necessary to bring the data products directly to these compute resources leading to large data transfers and storage requirements especially for high volume satellite or model datasets. In this presentation we will present a new technological solution under development and implementation at the NASA Jet Propulsion Laboratory for conducting oceanographic and related research based on satellite data and other sources. Fundamentally, our approach for satellite resources is to tile (partition) the data inputs into cloud-optimized and computation friendly databases that allow distributed computing resources to perform on demand and server-side computation and data analytics. This technology, known as NEXUS, has already been implemented in several existing NASA data portals to support oceanographic, sea-level, and gravity data time series analysis with capabilities to output time-average maps, correlation maps, Hovmöller plots, climatological averages and more. A further extension of this technology will integrate ocean in situ observations, event-based data discovery (e.g., natural disasters), data quality screening and additional capabilities. This particular activity is an open source project known as the Apache Science Data Analytics Platform (SDAP) (https://sdap.apache.org), and colloquially as OceanWorks, and is funded by the NASA AIST program. It harmonizes data, tools and computational resources for the researcher allowing them to focus on research results and hypothesis testing, and not be concerned with security, data preparation and management. We will present a few oceanographic and interdisciplinary use cases demonstrating the capabilities for characterizing regional sea-level rise, sea surface temperature anomalies, and ocean hurricane responses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1004
Permanent link to this record
 

 
Author (up) Armstrong, E.M.; Bourassa, M.A.; Cram, T.A.; DeBellis, M.; Elya, J.; Greguska III, F.R.; Huang, T.; Jacob, J.C.; Ji, Z.; Jiang, Y.; Li, Y.; Quach, N.; McGibbney, L.; Smith, S.; Tsontos, V.M.; Wilson, B.; Worley, S.J.; Yang, C.; Yam, E.
Title An Integrated Data Analytics Platform Type $loc['typeJournal Article']
Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.
Volume 6 Issue Pages 354
Keywords
Abstract An Integrated Science Data Analytics Platform is an environment that enables the confluence of resources for scientific investigation. It harmonizes data, tools and computational resources to enable the research community to focus on the investigation rather than spending time on security, data preparation, management, etc. OceanWorks is a NASA technology integration project to establish a cloud-based Integrated Ocean Science Data Analytics Platform for big ocean science at NASA’s Physical Oceanography Distributed Active Archive Center (PO.DAAC) for big ocean science. It focuses on advancement and maturity by bringing together several NASA open-source, big data projects for parallel analytics, anomaly detection, in situ to satellite data matchup, quality-screened data subsetting, search relevancy, and data discovery. Our communities are relying on data available through distributed data centers to conduct their research. In typical investigations, scientists would (1) search for data, (2) evaluate the relevance of that data, (3) download it, and (4) then apply algorithms to identify trends, anomalies, or other attributes of the data. Such a workflow cannot scale if the research involves a massive amount of data or multi-variate measurements. With the upcoming NASA Surface Water and Ocean Topography (SWOT) mission expected to produce over 20PB of observational data during its 3-year nominal mission, the volume of data will challenge all existing Earth Science data archival, distribution and analysis paradigms. This paper discusses how OceanWorks enhances the analysis of physical ocean data where the computation is done on an elastic cloud platform next to the archive to deliver fast, web-accessible services for working with oceanographic measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-7745 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1042
Permanent link to this record
 

 
Author (up) Bashmachnikov, I.L.; Fedorov, A.M.; Vesman, A.V.; Belonenko, T.V.; Dukhovskoy, D.S.
Title Thermohaline convection in the subpolar seas of the North Atlantic from satellite and in situ observations. Part 2: indices of intensity of deep convection Type $loc['typeJournal Article']
Year 2019 Publication Abbreviated Journal
Volume 16 Issue 1 Pages 191-201
Keywords deep convection, assimilation of satellite data, altimetry, water density, the Greenland Sea, the Labrador Sea, the Irminger Sea
Abstract Variation in locations of the maximum development of deep convection in the subpolar seas, taking into account their small dimensions, represent difficulty in identifying its interannual variability from usually sparse in situ data. In this work, the interannual variability of the maximum convection depth, is obtained using one of the most complete datasets ARMOR, which combines in situ and satellite data. The convection depths, derived from ARMOR, are used for testing the efficiency of two indices of convection intensity: (1) sea-level anomalies from satellite altimetry and (2) the integral water density in the areas of the most frequent development of deep convection. The first index, capturing some details, shows low correlations with the interannual variability of the deep convection intensity. The second index shows high correlation with the deep convection intensity in the Greenland, Irminger and Labrador seas. Asynchronous variations in the deep convection intensity in the Labrador-Irminger seas and in the Greenland Sea are obtained. In the Labrador and in the Irminger seas, the quasi-seven-year variations in the convection intensity are identified.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1089
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2020 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)