|   | 
Details
   web
Records
Author Magar, V.; Godínez, V.M.; Gross, M.S.; López-Mariscal, M.; Bermúdez-Romero, A.; Candela, J.; and Zamudio, L.
Title In-stream Energy by Tidal and Wind-driven Currents: An Analysis for the Gulf of California Type $loc['typeJournal Article']
Year 2020 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1101
Permanent link to this record
 

 
Author Xu, X.; Chassignet, E.P.; Firing, Y.L.; Donohue, K.
Title Antarctic Circumpolar Current transport through Drake Passage: What can we learn from comparing high-resolution model results to observations? Type $loc['typeJournal Article']
Year 2020 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 125 Issue 7 Pages
Keywords
Abstract Uncertainty exists in the time‐mean total transport of the Antarctic Circumpolar Current (ACC), the world�s strongest ocean current. The two most recent observational programs in Drake Passage, DRAKE and cDrake, yielded transports of 141 and 173.3 Sv, respectively. In this paper, we use a realistic 1/12° global ocean simulation to interpret these observational estimates and reconcile their differences. We first show that the modeled ACC transport in the upper 1000 m is in excellent agreement with repeat shipboard acoustic Doppler current profiler (SADCP) transects and that the exponentially decaying transport profile in the model is consistent with the profile derived from repeat hydrographic data. By further comparing the model results to the cDrake and DRAKE observations, we argue that the modeled 157.3 Sv transport, i.e. approximately the average of the cDrake and DRAKE estimates, is actually representative of the time‐mean ACC transport through the Drake Passage. The cDrake experiment overestimated the barotropic contribution in part because the array undersampled the deep recirculation southwest of the Shackleton Fracture Zone, whereas the surface geostrophic currents used in the DRAKE estimate yielded a weaker near‐surface transport than implied by the SADCP data. We also find that the modeled baroclinic and barotropic transports are not correlated, thus monitoring either baroclinic or barotropic transport alone may be insufficient to assess the temporal variability of the total ACC transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1107
Permanent link to this record
 

 
Author Shropshire, T.; Morey, S. L.; Chassignet, E. P.; Bozec, A.; Coles, V.J.; Landry, M.R.; Swalethorp, R.; Zapfe, G. and Stukel, M.R.
Title Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical-biogeochemical model Type $loc['typeJournal Article']
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Zooplankton play an important role in global biogeochemistry and their secondary production supports valuable fisheries of the world's oceans. Currently, zooplankton abundances cannot be estimated using remote sensing techniques. Hence, coupled physical-biogeochemical models (PBMs) provide an important tool for studying zooplankton on regional and global scales. However, evaluating the accuracy of zooplankton abundance estimates from PBMs has been a major challenge as a result of sparse observations. In this study, we configure a PBM for the Gulf of Mexico (GoM) from 1993&#65533;2012 and validate the model against an extensive combination of in situ biomass and rate measurements including total mesozooplankton biomass, size-fractionated mesozooplankton biomass and grazing rates, microzooplankton specific grazing rates, surface chlorophyll, deep chlorophyll maximum depth, phytoplankton specific growth rates, and net primary production. Spatial variability in mesozooplankton biomass climatology observed in a multi-decadal database for the northern GoM is well resolved by the model with a statistically significant (p&#8201;<&#8201;0.01) correlation of 0.90. Mesozooplankton secondary production for the region averaged 66&#8201;+&#8201;8&#8201;mt&#8201;C&#8201;yr&#8722;1 equivalent to approximately 10&#8201;% of NPP and ranged from 51 to 82&#8201;mt&#8201;C&#8201;yr&#8722;1. In terms of diet, model results from the shelf regions suggest that herbivory is the dominant feeding mode for small mesozooplankton (<&#8201;1-mm) whereas larger mesozooplankton are primarily carnivorous. However, in open-ocean, oligotrophic regions, both groups of mesozooplankton have proportionally greater reliance on heterotrophic protists as a food source. This highlights the important role of microbial and protistan food webs in sustaining mesozooplankton biomass in the GoM which serves as the primary food source for early life stages of many commercially-important fish species, including tuna.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1095
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)