|   | 
Details
   web
Records
Author Shropshire, T.; Morey, S. L.; Chassignet, E. P.; Bozec, A.; Coles, V.J.; Landry, M.R.; Swalethorp, R.; Zapfe, G. and Stukel, M.R.
Title Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical-biogeochemical model Type $loc['typeJournal Article']
Year 2019 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Zooplankton play an important role in global biogeochemistry and their secondary production supports valuable fisheries of the world's oceans. Currently, zooplankton abundances cannot be estimated using remote sensing techniques. Hence, coupled physical-biogeochemical models (PBMs) provide an important tool for studying zooplankton on regional and global scales. However, evaluating the accuracy of zooplankton abundance estimates from PBMs has been a major challenge as a result of sparse observations. In this study, we configure a PBM for the Gulf of Mexico (GoM) from 1993&#65533;2012 and validate the model against an extensive combination of in situ biomass and rate measurements including total mesozooplankton biomass, size-fractionated mesozooplankton biomass and grazing rates, microzooplankton specific grazing rates, surface chlorophyll, deep chlorophyll maximum depth, phytoplankton specific growth rates, and net primary production. Spatial variability in mesozooplankton biomass climatology observed in a multi-decadal database for the northern GoM is well resolved by the model with a statistically significant (p&#8201;<&#8201;0.01) correlation of 0.90. Mesozooplankton secondary production for the region averaged 66&#8201;+&#8201;8&#8201;mt&#8201;C&#8201;yr&#8722;1 equivalent to approximately 10&#8201;% of NPP and ranged from 51 to 82&#8201;mt&#8201;C&#8201;yr&#8722;1. In terms of diet, model results from the shelf regions suggest that herbivory is the dominant feeding mode for small mesozooplankton (<&#8201;1-mm) whereas larger mesozooplankton are primarily carnivorous. However, in open-ocean, oligotrophic regions, both groups of mesozooplankton have proportionally greater reliance on heterotrophic protists as a food source. This highlights the important role of microbial and protistan food webs in sustaining mesozooplankton biomass in the GoM which serves as the primary food source for early life stages of many commercially-important fish species, including tuna.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1095
Permanent link to this record
 

 
Author Stukel, M.R.; Barbeau, K.A.
Title Investigating the Nutrient Landscape in a Coastal Upwelling Region and Its Relationship to the Biological Carbon Pump Type $loc['typeJournal Article']
Year 2020 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.
Volume 47 Issue 6 Pages e2020GL087351
Keywords
Abstract We investigated nutrient patterns and their relationship to vertical carbon export using results from 38 Lagrangian experiments in the California Current Ecosystem. The dominant mode of variability reflected onshore-offshore nutrient gradients. A secondary mode of variability was correlated with silica excess and dissolved iron and likely reflects regional patterns of iron-limitation. The biological carbon pump was enhanced in high nutrient and Fe-stressed regions. Patterns in the nutrient landscape proved to be better predictors of the vertical flux of sinking particles than contemporaneous measurements of net primary production. Our results suggest an important role for Fe-stressed diatoms in vertical carbon flux. They also suggest that either preferential recycling of N or non-Redfieldian nutrient uptake by diatoms may lead to high PO:NO and Si(OH):NO ratios, following export of P- and Si-enriched organic matter. Increased export following Fe-stress may partially explain inverse relationships between net primary productivity and export efficiency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-8276 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1112
Permanent link to this record
 

 
Author Sun, J.; Wu, Z.
Title Isolating spatiotemporally local mixed Rossby-gravity waves using multi-dimensional ensemble empirical mode decomposition Type $loc['typeJournal Article']
Year 2019 Publication Climate Dynamics Abbreviated Journal Clim Dyn
Volume Issue 3-4 Pages 1383-1405
Keywords
Abstract Tropical waves have relatively large amplitudes in and near convective systems, attenuating as they propagate away from the area where they are generated due to the dissipative nature of the atmosphere. Traditionally, nonlocal analysis methods, such as those based on the Fourier transform, are applied to identify tropical waves. However, these methods have the potential to lead to the misidentification of local wavenumbers and spatial locations of local wave activities. To address this problem, we propose a new method for analyzing tropical waves, with particular focus placed on equatorial mixed Rossby-gravity (MRG) waves. The new tropical wave analysis method is based on the multi-dimensional ensemble empirical mode decomposition and a novel spectral representation based on spatiotemporally local wavenumber, frequency, and amplitude of waves. We first apply this new method to synthetic data to demonstrate the advantages of the method in revealing characteristics of MRG waves. We further apply the method to reanalysis data (1) to identify and isolate the spatiotemporally heterogeneous MRG waves event by event, and (2) to quantify the spatial inhomogeneity of these waves in a wavenumber-frequency-energy diagram. In this way, we reveal the climatology of spatiotemporal inhomogeneity of MRG waves and summarize it in wavenumber-frequency domain: The Indian Ocean is dominated by MRG waves in the period range of 8–12 days; the western Pacific Ocean consists of almost equal energy distribution of MRG waves in the period ranges of 3–6 and 8–12 days, respectively; and the eastern tropical Pacific Ocean and the tropical Atlantic Ocean are dominated by MRG waves in the period range of 3–6 days. The zonal wavenumbers mostly fall within the band of 4–15, with Indian Ocean has larger portion of higher wavenumber (smaller wavelength components) MRG waves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-7575 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1093
Permanent link to this record
 

 
Author Vinayachandran, P. N.; Davidson, Fraser; Chassignet, E. P.
Title Towards joint assessments, modern capabilities and new links for ocean prediction systems Type $loc['typeJournal Article']
Year 2020 Publication Bulletin of the American Meteorological Society Abbreviated Journal Bull. Amer. Meteor. Soc.
Volume 101 Issue 4 Pages
Keywords
Abstract Approximately 260 individuals from forecasting centers, research laboratories, academia, and industry representing 40 countries met to discuss recent developments in operational oceanography and brainstorm about the future directions of ocean prediction services.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1091
Permanent link to this record
 

 
Author Wang, S.; Kranz, S.A.; Kelly, T.B.; Song, H.; Stukel, M.R.; Cassar, N.
Title Lagrangian Studies of Net Community Production: The Effect of Diel and Multiday Nonsteady State Factors and Vertical Fluxes on O2/Ar in a Dynamic Upwelling Region Type $loc['typeJournal Article']
Year 2020 Publication Journal of Geophysical Research: Biogeosciences Abbreviated Journal J. Geophys. Res. Biogeosci.
Volume 125 Issue 6 Pages e2019JG005569
Keywords net community production; O2/Ar; California Current Ecosystem; Lagrangian measurements; vertical fluxes; nonsteady state
Abstract The ratio of dissolved oxygen to argon in seawater is frequently employed to estimate rates of net community production (NCP) in the oceanic mixed layer. The in situ O2/Ar&#8208;based method accounts for many physical factors that influence oxygen concentrations, permitting isolation of the biological oxygen signal produced by the balance of photosynthesis and respiration. However, this technique traditionally relies upon several assumptions when calculating the mixed&#8208;layer O2/Ar budget, most notably the absence of vertical fluxes of O2/Ar and the principle that the air&#8208;sea gas exchange of biological oxygen closely approximates net productivity rates. Employing a Lagrangian study design and leveraging data outputs from a regional physical oceanographic model, we conducted in situ measurements of O2/Ar in the California Current Ecosystem in spring 2016 and summer 2017 to evaluate these assumptions within a &#65533;worst&#8208;case&#65533; field environment. Quantifying vertical fluxes, incorporating nonsteady state changes in O2/Ar, and comparing NCP estimates evaluated over several day versus longer timescales, we find differences in NCP metrics calculated over different time intervals to be considerable, also observing significant potential effects from vertical fluxes, particularly advection. Additionally, we observe strong diel variability in O2/Ar and NCP rates at multiple stations. Our results reemphasize the importance of accounting for vertical fluxes when interpreting O2/Ar&#8208;derived NCP data and the potentially large effect of nonsteady state conditions on NCP evaluated over shorter timescales. In addition, diel cycles in surface O2/Ar can also bias interpretation of NCP data based on local productivity and the time of day when measurements were made.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-8953 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1114
Permanent link to this record
 

 
Author Xu, X.; Chassignet, E.P.; Firing, Y.L.; Donohue, K.
Title Antarctic Circumpolar Current transport through Drake Passage: What can we learn from comparing high-resolution model results to observations? Type $loc['typeJournal Article']
Year 2020 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 125 Issue 7 Pages
Keywords
Abstract Uncertainty exists in the time&#8208;mean total transport of the Antarctic Circumpolar Current (ACC), the world&#65533;s strongest ocean current. The two most recent observational programs in Drake Passage, DRAKE and cDrake, yielded transports of 141 and 173.3 Sv, respectively. In this paper, we use a realistic 1/12° global ocean simulation to interpret these observational estimates and reconcile their differences. We first show that the modeled ACC transport in the upper 1000 m is in excellent agreement with repeat shipboard acoustic Doppler current profiler (SADCP) transects and that the exponentially decaying transport profile in the model is consistent with the profile derived from repeat hydrographic data. By further comparing the model results to the cDrake and DRAKE observations, we argue that the modeled 157.3 Sv transport, i.e. approximately the average of the cDrake and DRAKE estimates, is actually representative of the time&#8208;mean ACC transport through the Drake Passage. The cDrake experiment overestimated the barotropic contribution in part because the array undersampled the deep recirculation southwest of the Shackleton Fracture Zone, whereas the surface geostrophic currents used in the DRAKE estimate yielded a weaker near&#8208;surface transport than implied by the SADCP data. We also find that the modeled baroclinic and barotropic transports are not correlated, thus monitoring either baroclinic or barotropic transport alone may be insufficient to assess the temporal variability of the total ACC transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1107
Permanent link to this record
 

 
Author Yu, B.; Seed, A.; Pu, L.; Malone, T.
Title Integration of weather radar data into a raster GIS framework for improved flood estimation Type $loc['typeJournal Article']
Year 2019 Publication Atmospheric Science Letters Abbreviated Journal Atmos. Sci. Lett.
Volume 6 Issue 1 Pages
Keywords
Abstract We present in this paper the interannual variability of seasonal temperature and rainfall in the Indian meteorological subdivisions (IMS) for boreal winter and summer seasons that take in to account the varying length of the seasons.Our study reveals that accounting for the variations in the length of the sea-sons produces stronger teleconnections between the seasonal anomalies of surface temperature and rainfall over India with corresponding sea surface temperature anomalies of the tropical Oceans (especially over the northern Indian and the equatorial Pacific Oceans) compared to the same teleconnections from fixed length seasons over the IMS. It should be noted that the IMS show significant spatial heterogeneity in these teleconnections
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-261X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1069
Permanent link to this record
 

 
Author Zou, S.; Bower, A.; Furey, H.; Susan Lozier, M.; Xu, X.
Title Redrawing the Iceland-Scotland Overflow Water pathways in the North Atlantic Type $loc['typeJournal Article']
Year 2020 Publication Abbreviated Journal Nat Commun
Volume 11 Issue 1 Pages 1890
Keywords
Abstract Iceland-Scotland Overflow Water (ISOW) is a primary deep water mass exported from the Norwegian Sea into the North Atlantic as part of the global Meridional Overturning Circulation. ISOW has historically been depicted as flowing counter-clockwise in a deep boundary current around the subpolar North Atlantic, but this single-boundary-following pathway is being challenged by new Lagrangian observations and model simulations. We show here that ISOW leaves the boundary and spreads into the interior towards the central Labrador and Irminger basins after flowing through the Charlie-Gibbs Fracture Zone. We also describe a newly observed southward pathway of ISOW along the western flank of the Mid-Atlantic Ridge. The partitioning of these pathways is shown to be influenced by deep-reaching eddies and meanders of the North Atlantic Current. Our results, in tandem with previous studies, call for a revision in the historical depiction of ISOW pathways throughout the North Atlantic.
Address Center for Ocean-Atmosphere Prediction Studies, Florida State University, Tallahassee, FL, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Funding strtoupper('3').strtolower('2313002'); strtoupper('P').strtolower('MC7170894') Approved $loc['no']
Call Number COAPS @ user @ Serial 1105
Permanent link to this record
 

 
Author Zou, S.; Lozier, M.S.; Xu, X.
Title Latitudinal Structure of the Meridional Overturning Circulation Variability on Interannual to Decadal Time Scales in the North Atlantic Ocean Type $loc['typeJournal Article']
Year 2020 Publication Journal of Climate Abbreviated Journal J. Climate
Volume 33 Issue 9 Pages 3845-3862
Keywords Deep convection; Ocean circulation; Thermocline circulation
Abstract The latitudinal structure of the Atlantic meridional overturning circulation (AMOC) variability in the North Atlantic is investigated using numerical results from three ocean circulation simulations over the past four to five decades. We show that AMOC variability south of the Labrador Sea (53°N) to 25°N can be decomposed into a latitudinally coherent component and a gyre-opposing component. The latitudinally coherent component contains both decadal and interannual variabilities. The coherent decadal AMOC variability originates in the subpolar region and is reflected by the zonal density gradient in that basin. It is further shown to be linked to persistent North Atlantic Oscillation (NAO) conditions in all three models. The interannual AMOC variability contained in the latitudinally coherent component is shown to be driven by westerlies in the transition region between the subpolar and the subtropical gyre (40°–50°N), through significant responses in Ekman transport. Finally, the gyre-opposing component principally varies on interannual time scales and responds to local wind variability related to the annual NAO. The contribution of these components to the total AMOC variability is latitude-dependent: 1) in the subpolar region, all models show that the latitudinally coherent component dominates AMOC variability on interannual to decadal time scales, with little contribution from the gyre-opposing component, and 2) in the subtropical region, the gyre-opposing component explains a majority of the interannual AMOC variability in two models, while in the other model, the contributions from the coherent and the gyre-opposing components are comparable. These results provide a quantitative decomposition of AMOC variability across latitudes and shed light on the linkage between different AMOC variability components and atmospheric forcing mechanisms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0894-8755 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1106
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)