Records |
Author  |
Ali, A.; Christensen, K.H.; Breivik, Ø.; Malila, M.; Raj, R.P.; Bertino, L.; Chassignet, E.P.; Bakhoday-Paskyabi, M. |
Title |
A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans |
Type |
$loc['typeJournal Article'] |
Year |
2019 |
Publication |
Ocean Modelling |
Abbreviated Journal |
Ocean Modelling |
Volume |
137 |
Issue |
|
Pages |
76-97 |
Keywords |
Langmuir mixing parameterization Mixed layer depth Sea surface temperature Ocean heat content Stokes penetration depth |
Abstract |
Five different parameterizations of Langmuir turbulence (LT) effect are investigated in a realistic model of the North Atlantic and Arctic using realistic wave forcing from a global wave hindcast. The parameterizations mainly apply an enhancement to the turbulence velocity scale, and/or to the entrainment buoyancy flux in the surface boundary layer. An additional run is also performed with other wave effects to assess the relative importance of Langmuir turbulence, namely the Coriolis-Stokes forcing, Stokes tracer advection and wave-modified momentum fluxes. The default model (without wave effects) underestimates the mixed layer depth in summer and overestimates it at high latitudes in the winter. The results show that adding LT mixing reduces shallow mixed layer depth (MLD) biases, particularly in the subtropics all year-around, and in the Nordic Seas in summer. There is overall a stronger relative impact on the MLD during winter than during summer. In particular, the parameterization with the most vigorous LT effect causes winter MLD increases by more than 50% relative to a control run without Langmuir mixing. On the contrary, the parameterization which assumes LT effects on the entrainment buoyancy flux and accounts for the Stokes penetration depth is able to enhance the mixing in summer more than in winter. This parametrization is also distinct from the others because it restrains the LT mixing in regions of deep MLD biases, so it is the preferred choice for our purpose. The different parameterizations do not change the amplitude or phase of the seasonal cycle of heat content but do influence its long-term trend, which means that the LT can influence the drift of ocean models. The combined impact on water mass properties from the Coriolis-Stokes force, the Stokes drift tracer advection, and the wave-dependent momentum fluxes is negligible compared to the effect from the parameterized Langmuir turbulence. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1463-5003 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ user @ |
Serial |
1001 |
Permanent link to this record |
|
|
|
Author  |
Ali, M.; Singh, N.; Kumar, M.; Zheng, Y.; Bourassa, M.; Kishtawal, C.; Rao, C. |
Title |
Dominant Modes of Upper Ocean Heat Content in the North Indian Ocean |
Type |
$loc['typeJournal Article'] |
Year |
2018 |
Publication |
Climate |
Abbreviated Journal |
Climate |
Volume |
6 |
Issue |
3 |
Pages |
71 |
Keywords |
ocean heat content; tropical cyclone heat potential; dominant modes; North Indian Ocean; SUMMER MONSOON; INTENSIFICATION; INTENSITY; PACIFIC |
Abstract |
The thermal energy needed for the development of hurricanes and monsoons as well as any prolonged marine weather event comes from layers in the upper oceans, not just from the thin layer represented by sea surface temperature alone. Ocean layers have different modes of thermal energy variability because of the different time scales of ocean-atmosphere interaction. Although many previous studies have focused on the influence of upper ocean heat content (OHC) on tropical cyclones and monsoons, no study thus farparticularly in the North Indian Ocean (NIO)has specifically concluded the types of dominant modes in different layers of the ocean. In this study, we examined the dominant modes of variability of OHC of seven layers in the NIO during 1998-2014. We conclude that the thermal variability in the top 50 m of the ocean had statistically significant semiannual and annual modes of variability, while the deeper layers had the annual mode alone. Time series of OHC for the top four layers were analyzed separately for the NIO, Arabian Sea, and Bay of Bengal. For the surface to 50 m layer, the lowest and the highest values of OHC were present in January and May every year, respectively, which was mainly caused by the solar radiation cycle. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2225-1154 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ rl18 @ |
Serial |
986 |
Permanent link to this record |
|
|
|
Author  |
Ali, M.M.; Nagamani, P.V.; Sharma, N.; Venu Gopal, R.T.; Rajeevan, M.; Goni, G.J.; Bourassa, M.A. |
Title |
Relationship between ocean mean temperatures and Indian summer monsoon rainfall |
Type |
$loc['typeJournal Article'] |
Year |
2015 |
Publication |
Atmospheric Science Letters |
Abbreviated Journal |
Atmos. Sci. Lett. |
Volume |
16 |
Issue |
3 |
Pages |
408-413 |
Keywords |
ocean mean temperature; Indian summer monsoon rainfall; remote sensing; sea surface height anomaly |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1530261X |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
94 |
Permanent link to this record |
|
|
|
Author  |
Ansong, J.K.; Arbic, B.K.; Simmons, H.L.; Alford, M.H.; Buijsman, M.C.; Timko, P.G.; Richman, J.G.; Shriver, J.F.; Wallcraft, A.J. |
Title |
Geographical Distribution of Diurnal and Semidiurnal Parametric Subharmonic Instability in a Global Ocean Circulation Model |
Type |
$loc['typeJournal Article'] |
Year |
2018 |
Publication |
Journal of Physical Oceanography |
Abbreviated Journal |
J. Phys. Oceanogr. |
Volume |
48 |
Issue |
6 |
Pages |
1409-1431 |
Keywords |
Baroclinic flows; Internal waves; Nonlinear dynamics; Ocean dynamics; Baroclinic models; Ocean models |
Abstract |
The evidence for, baroclinic energetics of, and geographic distribution of parametric subharmonic instability (PSI) arising from both diurnal and semidiurnal tides in a global ocean general circulation model is investigated using 1/12.5° and 1/25° simulations that are forced by both atmospheric analysis fields and the astronomical tidal potential. The paper examines whether PSI occurs in the model, and whether it accounts for a significant fraction of the tidal baroclinic energy loss. Using energy transfer calculations and bispectral analyses, evidence is found for PSI around the critical latitudes of the tides. The intensity of both diurnal and semidiurnal PSI in the simulations is greatest in the upper ocean, consistent with previous results from idealized simulations, and quickly drops off about 5° from the critical latitudes. The sign of energy transfer depends on location; the transfer is positive (from the tides to subharmonic waves) in some locations and negative in others. The net globally integrated energy transfer is positive in all simulations and is 0.5%�10% of the amount of energy required to close the baroclinic energy budget in the model. The net amount of energy transfer is about an order of magnitude larger in the 1/25° semidiurnal simulation than the 1/12.5° one, implying the dependence of the rate of energy transfer on model resolution. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0022-3670 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ user @ |
Serial |
976 |
Permanent link to this record |
|
|
|
Author  |
Arbic, B.K.; Shriver, J.F.; Hogan, P.J.; Hurlburt, H.E.; McClean, J.L.; Metzger, E.J.; Scott, R.B.; Sen, A.; Smedstad, O.M.; Wallcraft, A.J. |
Title |
Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models |
Type |
$loc['typeJournal Article'] |
Year |
2009 |
Publication |
Journal of Geophysical Research |
Abbreviated Journal |
J. Geophys. Res. |
Volume |
114 |
Issue |
C2 |
Pages |
|
Keywords |
energy budget; bottom drag; ocean models |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0148-0227 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
Naval Research Laboratory |
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
656 |
Permanent link to this record |
|
|
|
Author  |
Arbic, B.K.; Wallcraft, A.J.; Metzger, E.J. |
Title |
Concurrent simulation of the eddying general circulation and tides in a global ocean model |
Type |
$loc['typeJournal Article'] |
Year |
2010 |
Publication |
Ocean Modelling |
Abbreviated Journal |
Ocean Modelling |
Volume |
32 |
Issue |
3-4 |
Pages |
175-187 |
Keywords |
Eddies; Internal tides; High-resolution ocean models |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1463-5003 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
341 |
Permanent link to this record |
|
|
|
Author  |
Armstrong, E. M.; Bourassa, M. A.; Cram, T.; Elya, J. L.; Greguska, F. R., III; Huang, T.; Jacob, J. C.; Ji, Z.; Jiang, Y.; Li, Y.; McGibbney, L. J.; Quach, N.; Smith, S. R.; Tsontos, V. M.; Wilson, B. D.; Worley, S. J.; Yang, C. P. |
Title |
An information technology foundation for fostering interdisciplinary oceanographic research and analysis |
Type |
$loc['typeAbstract'] |
Year |
2018 |
Publication |
American Geophysical Union |
Abbreviated Journal |
AGU |
Volume |
Fall Meeting |
Issue |
|
Pages |
|
Keywords |
1914 Data mining, INFORMATICSDE: 4805 Biogeochemical cycles, processes, and modeling, OCEANOGRAPHY: BIOLOGICAL AND CHEMICALDE: 4273 Physical and biogeochemical interactions, OCEANOGRAPHY: GENERALDE: 4504 Air/sea interactions, OCEANOGRAPHY: PHYSICAL |
Abstract |
Before complex analysis of oceanographic or any earth science data can occur, it must be placed in the proper domain of computing and software resources. In the past this was nearly always the scientist's personal computer or institutional computer servers. The problem with this approach is that it is necessary to bring the data products directly to these compute resources leading to large data transfers and storage requirements especially for high volume satellite or model datasets. In this presentation we will present a new technological solution under development and implementation at the NASA Jet Propulsion Laboratory for conducting oceanographic and related research based on satellite data and other sources. Fundamentally, our approach for satellite resources is to tile (partition) the data inputs into cloud-optimized and computation friendly databases that allow distributed computing resources to perform on demand and server-side computation and data analytics. This technology, known as NEXUS, has already been implemented in several existing NASA data portals to support oceanographic, sea-level, and gravity data time series analysis with capabilities to output time-average maps, correlation maps, Hovmöller plots, climatological averages and more. A further extension of this technology will integrate ocean in situ observations, event-based data discovery (e.g., natural disasters), data quality screening and additional capabilities. This particular activity is an open source project known as the Apache Science Data Analytics Platform (SDAP) (https://sdap.apache.org), and colloquially as OceanWorks, and is funded by the NASA AIST program. It harmonizes data, tools and computational resources for the researcher allowing them to focus on research results and hypothesis testing, and not be concerned with security, data preparation and management. We will present a few oceanographic and interdisciplinary use cases demonstrating the capabilities for characterizing regional sea-level rise, sea surface temperature anomalies, and ocean hurricane responses. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ user @ |
Serial |
1004 |
Permanent link to this record |
|
|
|
Author  |
Banks, R. |
Title |
Variability of Indian Ocean Surface Fluxes Using a New Objective Method |
Type |
$loc['typeManuscript'] |
Year |
2006 |
Publication |
|
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
Indian Ocean Dipole Mode, Indian Ocean, Objective Method, Surface Turbulent Fluxes, Monsoon, Gridded Product |
Abstract |
A new objective technique is used to analyze monthly mean gridded fields of air and sea temperature, scalar and vector wind, specific humidity, sensible and latent heat flux, and wind stress over the Indian Ocean. A variational method produces a 1°x1° gridded product of surface turbulent fluxes and the variables needed to calculate these fluxes. The surface turbulent fluxes are forced to be physically consistent with the other variables. The variational method incorporates a state of the art flux model, which should reduce regional biases in heat and moisture fluxes. The time period is January 1982 to December 2003. The wind vectors are validated through comparison to monthly scatterometer winds. Empirical orthogonal function (EOF) analyses of the annual cycle emphasize significant modes of variability in the Indian Ocean. The dominant monsoon reversal and its connection with the southeast trades are linked in eigenmodes one and two of the surface fluxes. The third eigenmode of latent and sensible heat flux reveal a structure similar to the Indian Ocean Dipole (IOD) mode. The variability in surface fluxes associated with the monsoons and IOD are discussed. September-October-November composites of the surface fluxes during the 1997 positive IOD event and the 1983 negative IOD event are examined. The composites illustrate characteristics of fluxes during different IOD phases. |
Address |
Department of Meteorology |
Corporate Author |
|
Thesis |
$loc['Master's thesis'] |
Publisher |
Florida State University |
Place of Publication |
Tallahassee, FL |
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
NASA, OSU, NOAA, NSF |
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
621 |
Permanent link to this record |
|
|
|
Author  |
Belyaev, K.P.; Tanajura, C.A.S.; O'Brien, J.J. |
Title |
A data assimilation method used with an ocean circulation model and its application to the tropical Atlantic |
Type |
$loc['typeJournal Article'] |
Year |
2001 |
Publication |
Applied Mathematical Modelling |
Abbreviated Journal |
Applied Mathematical Modelling |
Volume |
25 |
Issue |
8 |
Pages |
655-670 |
Keywords |
Data assimilation Fokker–Planck equation NOAA/GFDL MOM_2 ocean circulation model PIRATA project |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0307904X |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
819 |
Permanent link to this record |
|
|
|
Author  |
Bentamy, A.; Piollé, J.F.; Grouazel, A.; Danielson, R.; Gulev, S.; Paul, F.; Azelmat, H.; Mathieu, P.P.; von Schuckmann, K.; Sathyendranath, S.; Evers-King, H.; Esau, I.; Johannessen, J.A.; Clayson, C.A.; Pinker, R.T.; Grodsky, S.A.; Bourassa, M.; Smith, S.R.; Haines, K.; Valdivieso, M.; Merchant, C.J.; Chapron, B.; Anderson, A.; Hollmann, R.; Josey, S.A. |
Title |
Review and assessment of latent and sensible heat flux accuracy over the global oceans |
Type |
$loc['typeJournal Article'] |
Year |
2017 |
Publication |
Remote Sensing of Environment |
Abbreviated Journal |
Remote Sensing of Environment |
Volume |
201 |
Issue |
|
Pages |
196-218 |
Keywords |
Ocean Heat Flux; Latent heat flux; Sensible heat flux; Ocean heat content; Scatterometer; Surface wind; Specfic air humidity; OceanSites; Remotely sensed data |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0034-4257 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
232 |
Permanent link to this record |