|   | 
Details
   web
Records
Author (up) Ali, A.; Christensen, K.H.; Breivik, Ø.; Malila, M.; Raj, R.P.; Bertino, L.; Chassignet, E.P.; Bakhoday-Paskyabi, M.
Title A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans Type $loc['typeJournal Article']
Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 137 Issue Pages 76-97
Keywords Langmuir mixing parameterization Mixed layer depth Sea surface temperature Ocean heat content Stokes penetration depth
Abstract Five different parameterizations of Langmuir turbulence (LT) effect are investigated in a realistic model of the North Atlantic and Arctic using realistic wave forcing from a global wave hindcast. The parameterizations mainly apply an enhancement to the turbulence velocity scale, and/or to the entrainment buoyancy flux in the surface boundary layer. An additional run is also performed with other wave effects to assess the relative importance of Langmuir turbulence, namely the Coriolis-Stokes forcing, Stokes tracer advection and wave-modified momentum fluxes. The default model (without wave effects) underestimates the mixed layer depth in summer and overestimates it at high latitudes in the winter. The results show that adding LT mixing reduces shallow mixed layer depth (MLD) biases, particularly in the subtropics all year-around, and in the Nordic Seas in summer. There is overall a stronger relative impact on the MLD during winter than during summer. In particular, the parameterization with the most vigorous LT effect causes winter MLD increases by more than 50% relative to a control run without Langmuir mixing. On the contrary, the parameterization which assumes LT effects on the entrainment buoyancy flux and accounts for the Stokes penetration depth is able to enhance the mixing in summer more than in winter. This parametrization is also distinct from the others because it restrains the LT mixing in regions of deep MLD biases, so it is the preferred choice for our purpose. The different parameterizations do not change the amplitude or phase of the seasonal cycle of heat content but do influence its long-term trend, which means that the LT can influence the drift of ocean models. The combined impact on water mass properties from the Coriolis-Stokes force, the Stokes drift tracer advection, and the wave-dependent momentum fluxes is negligible compared to the effect from the parameterized Langmuir turbulence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1001
Permanent link to this record
 

 
Author (up) Ali, M.M.; Nagamani, P.V.; Sharma, N.; Venu Gopal, R.T.; Rajeevan, M.; Goni, G.J.; Bourassa, M.A.
Title Relationship between ocean mean temperatures and Indian summer monsoon rainfall Type $loc['typeJournal Article']
Year 2015 Publication Atmospheric Science Letters Abbreviated Journal Atmos. Sci. Lett.
Volume 16 Issue 3 Pages 408-413
Keywords ocean mean temperature; Indian summer monsoon rainfall; remote sensing; sea surface height anomaly
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530261X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 94
Permanent link to this record
 

 
Author (up) Armstrong, E. M.; Bourassa, M. A.; Cram, T.; Elya, J. L.; Greguska, F. R., III; Huang, T.; Jacob, J. C.; Ji, Z.; Jiang, Y.; Li, Y.; McGibbney, L. J.; Quach, N.; Smith, S. R.; Tsontos, V. M.; Wilson, B. D.; Worley, S. J.; Yang, C. P.
Title An information technology foundation for fostering interdisciplinary oceanographic research and analysis Type $loc['typeAbstract']
Year 2018 Publication American Geophysical Union Abbreviated Journal AGU
Volume Fall Meeting Issue Pages
Keywords 1914 Data mining, INFORMATICSDE: 4805 Biogeochemical cycles, processes, and modeling, OCEANOGRAPHY: BIOLOGICAL AND CHEMICALDE: 4273 Physical and biogeochemical interactions, OCEANOGRAPHY: GENERALDE: 4504 Air/sea interactions, OCEANOGRAPHY: PHYSICAL
Abstract Before complex analysis of oceanographic or any earth science data can occur, it must be placed in the proper domain of computing and software resources. In the past this was nearly always the scientist's personal computer or institutional computer servers. The problem with this approach is that it is necessary to bring the data products directly to these compute resources leading to large data transfers and storage requirements especially for high volume satellite or model datasets. In this presentation we will present a new technological solution under development and implementation at the NASA Jet Propulsion Laboratory for conducting oceanographic and related research based on satellite data and other sources. Fundamentally, our approach for satellite resources is to tile (partition) the data inputs into cloud-optimized and computation friendly databases that allow distributed computing resources to perform on demand and server-side computation and data analytics. This technology, known as NEXUS, has already been implemented in several existing NASA data portals to support oceanographic, sea-level, and gravity data time series analysis with capabilities to output time-average maps, correlation maps, Hovmöller plots, climatological averages and more. A further extension of this technology will integrate ocean in situ observations, event-based data discovery (e.g., natural disasters), data quality screening and additional capabilities. This particular activity is an open source project known as the Apache Science Data Analytics Platform (SDAP) (https://sdap.apache.org), and colloquially as OceanWorks, and is funded by the NASA AIST program. It harmonizes data, tools and computational resources for the researcher allowing them to focus on research results and hypothesis testing, and not be concerned with security, data preparation and management. We will present a few oceanographic and interdisciplinary use cases demonstrating the capabilities for characterizing regional sea-level rise, sea surface temperature anomalies, and ocean hurricane responses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1004
Permanent link to this record
 

 
Author (up) Arruda, W.Z.; Campos, E.J.D.; Zharkov, V.; Soutelino, R.G.; da Silveira, I.C.A.
Title Events of equatorward translation of the Vitoria Eddy Type $loc['typeJournal Article']
Year 2013 Publication Continental Shelf Research Abbreviated Journal Continental Shelf Research
Volume 70 Issue Pages 61-73
Keywords Vitoria Eddy; Vitoria-Trindade ridge; Brazil Current; South Atlantic; Sea Surface Height; Altimetry
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0278-4343 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 179
Permanent link to this record
 

 
Author (up) Baigorria, G.; Jones, J.; Shin, D.; Mishra, A.; Ingram, K. T., Jones, J. W., O'Brien, J. J., Roncoli, M. C., Fraisse, C., Breuer, N. E., Bartels, W.-L., Zierden, D. F., Letson, D.
Title Assessing uncertainties in crop model simulations using daily bias-corrected Regional Circulation Model outputs Type $loc['typeJournal Article']
Year 2007 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 34 Issue Pages 211-222
Keywords crop yield forecasts; regional circulation models; crop models; bias correction; seasonal climate forecasts
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 421
Permanent link to this record
 

 
Author (up) Bashmachnikov, I.L.; Fedorov, A.M.; Vesman, A.V.; Belonenko, T.V.; Dukhovskoy, D.S.
Title Thermohaline convection in the subpolar seas of the North Atlantic from satellite and in situ observations. Part 2: indices of intensity of deep convection Type $loc['typeJournal Article']
Year 2019 Publication Abbreviated Journal
Volume 16 Issue 1 Pages 191-201
Keywords deep convection, assimilation of satellite data, altimetry, water density, the Greenland Sea, the Labrador Sea, the Irminger Sea
Abstract Variation in locations of the maximum development of deep convection in the subpolar seas, taking into account their small dimensions, represent difficulty in identifying its interannual variability from usually sparse in situ data. In this work, the interannual variability of the maximum convection depth, is obtained using one of the most complete datasets ARMOR, which combines in situ and satellite data. The convection depths, derived from ARMOR, are used for testing the efficiency of two indices of convection intensity: (1) sea-level anomalies from satellite altimetry and (2) the integral water density in the areas of the most frequent development of deep convection. The first index, capturing some details, shows low correlations with the interannual variability of the deep convection intensity. The second index shows high correlation with the deep convection intensity in the Greenland, Irminger and Labrador seas. Asynchronous variations in the deep convection intensity in the Labrador-Irminger seas and in the Greenland Sea are obtained. In the Labrador and in the Irminger seas, the quasi-seven-year variations in the convection intensity are identified.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1089
Permanent link to this record
 

 
Author (up) Bastola, S.; Misra, V.
Title Seasonal hydrological and nutrient loading forecasts for watersheds over the Southeastern United States Type $loc['typeJournal Article']
Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Environmental Modelling & Software
Volume 73 Issue Pages 90-102
Keywords Rainfall-runoff model; Seasonal hydrologic forecasting; Southeastern United States; Water quality; Seasonal predictability
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 95
Permanent link to this record
 

 
Author (up) Bastola, S.; Misra, V.; Li, H.
Title Seasonal Hydrological Forecasts for Watersheds over the Southeastern United States for the Boreal Summer and Fall Seasons Type $loc['typeJournal Article']
Year 2013 Publication Earth Interactions Abbreviated Journal Earth Interact.
Volume 17 Issue 25 Pages 1-22
Keywords Seasonal climate forecast; Ensemble streamflow prediction; Rainfall–runoff model
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1087-3562 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 207
Permanent link to this record
 

 
Author (up) Bourassa, M.A.; Legler, D.M.; O'Brien, J.J.; Smith, S.R.
Title SeaWinds validation with research vessels Type $loc['typeJournal Article']
Year 2003 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res.
Volume 108 Issue C2 Pages
Keywords remote sensing; SeaWinds; validation; ocean; winds
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding NASA, NSF, ONR Approved $loc['no']
Call Number COAPS @ mfield @ Serial 484
Permanent link to this record
 

 
Author (up) Bourassa, MA; Weissman, DE
Title The development and application of a sea surface stress model function for the QuikSCAT and ADEOS-II SeaWinds scatterometers Type $loc['typeConference Article']
Year 2003 Publication IEEE International Symposium on Geoscience and Remote Sensing (IGARSS) Abbreviated Journal
Volume Issue Pages 239-241
Keywords component; surface stress; SeaWinds; scatterometer; validation
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 23rd International Geoscience and Remote Sensing Symposium (IGARSS 2003)
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 485
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)