|   | 
Author (up) Xu, X.; Chassignet, E.P., Wang, F.
Title On the variability of the Atlantic meridional overturning circulation transports in coupled CMIP5 simulations Type $loc['typeJournal Article']
Year 2018 Publication Climate Dynamics Abbreviated Journal Clim Dyn.
Volume 51 Issue 11 Pages 6511-6531
Keywords NAO-AMOC; CMIP5; NAO index; AMOC index; meridional pressure gradient; magnitude; structure change of the NAO.
Abstract The Atlantic meridional overturning circulation (AMOC) plays a fundamental role in the climate system, and long-term climate simulations are used to understand the AMOC variability and to assess its impact. This study examines the basic characteristics of the AMOC variability in 44 CMIP5 (Phase 5 of the Coupled Model Inter-comparison Project) simulations, using the 18 atmospherically-forced CORE-II (Phase 2 of the Coordinated Ocean-ice Reference Experiment) simulations as a reference. The analysis shows that on interannual and decadal timescales, the AMOC variability in the CMIP5 exhibits a similar magnitude and meridional coherence as in the CORE-II simulations, indicating that the modeled atmospheric variability responsible for AMOC variability in the CMIP5 is in reasonable agreement with the CORE-II forcing. On multidecadal timescales, however, the AMOC variability is weaker by a factor of more than 2 and meridionally less coherent in the CMIP5 than in the CORE-II simulations. The CMIP5 simulations also exhibit a weaker long-term atmospheric variability in the North Atlantic Oscillation (NAO). However, one cannot fully attribute the weaker AMOC variability to the weaker variability in NAO because, unlike the CORE-II simulations, the CMIP5 simulations do not exhibit a robust NAO-AMOC linkage. While the variability of the wintertime heat flux and mixed layer depth in the western subpolar North Atlantic is strongly linked to the AMOC variability, the NAO variability is not.
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ rl18 @ Serial 981
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841

© 2023 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)