|   | 
Details
   web
Records
Author (up) Nof, D.; Jia, Y.; Chassignet, E.; Bozec, A.
Title Fast Wind-Induced Migration of Leddies in the South China Sea Type $loc['typeJournal Article']
Year 2011 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.
Volume 41 Issue 9 Pages 1683-1693
Keywords Eddies; Seas; gulfs; bays; Wind stress; Numerical analysis/modeling; Monsoons
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3670 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 324
Permanent link to this record
 

 
Author (up) Nyadjro, E.S.; Jensen, T.G.; Richman, J.G.; Shriver, J.F.
Title On the Relationship Between Wind, SST, and the Thermocline in the Seychelles-Chagos Thermocline Ridge Type $loc['typeJournal Article']
Year 2017 Publication IEEE Geoscience and Remote Sensing Letters Abbreviated Journal IEEE Geosci. Remote Sensing Lett.
Volume 14 Issue 12 Pages 2315-2319
Keywords Altimetry; HYbrid Coordinate Ocean Model (HYCOM); Indian Ocean Dipole (IOD); ocean-atmosphere coupling; Rossby waves; sea surface temperature (SST); thermocline depth; winds
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1545-598X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 465
Permanent link to this record
 

 
Author (up) Perrie, W.; Zhang, W.; Bourassa, M.; Shen, H.; Vachon, P.W.
Title Impact of Satellite Winds on Marine Wind Simulations Type $loc['typeJournal Article']
Year 2008 Publication Weather and Forecasting Abbreviated Journal Wea. Forecasting
Volume 23 Issue 2 Pages 290-303
Keywords Satellite observations; Data assimilation; Hurricanes; Waves, oceanic; Ocean modeling; Numerical analysis
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0882-8156 ISBN Medium
Area Expedition Conference
Funding NASA, OVWST Approved $loc['no']
Call Number COAPS @ mfield @ Serial 680
Permanent link to this record
 

 
Author (up) Petraitis, D. C.
Title Long-Term ENSO-Related Winter Rainfall Predictions over the Southeast U.S. Using the FSU Global Spectral Model Type $loc['typeManuscript']
Year 2006 Publication Abbreviated Journal
Volume Issue Pages
Keywords Correlation, Model, Precipitation, ENSO, Skill Score
Abstract Rainfall patterns over the Southeast U.S. have been found to be connected to the El Niño-Southern Oscillation (ENSO). Warm ENSO events cause positive precipitation anomalies and cold ENSO events cause negative precipitation anomalies. With this level of connection, models can be used to test the predictability of ENSO events. Using the Florida State University Global Spectral Model (FSUGSM), model data over a 50-year period will be evaluated for its similarity to observations. The FSUGSM is a global spectral model with a T63 horizontal resolution (approximately 1.875°) and 17 unevenly spaced vertical levels. Details of this model can be found in Cocke and LaRow (2000). The experiment utilizes two runs using the Naval Research Laboratory (NRL) RAS convection scheme and two runs using the National Centers for Environmental Prediction (NCEP) SAS convection scheme to comprise the ensemble. The simulation was done for 50 years, from 1950 to 1999. Reynolds and Smith monthly mean sea surface temperatures (SSTs) from 1950-1999 provide the lower boundary condition. Atmospheric and land conditions from January 1, 1987 and January 1, 1995 were used as the initial starting conditions. The observational precipitation data being used as the basis for comparison is a gridded global dataset from Willmott and Matsuura (2005). Phase precipitation differences show higher precipitation amounts for El Niño than La Niña in all model runs. Temporal correlations between model runs and the observations show southern and eastern areas with the highest correlation values during an ENSO event. Skill scores validate the findings of the model/observation correlations, with southern and eastern areas showing scores close to zero. Temporal correlations between tropical Pacific SSTs and Southeast precipitation further confirm the model's ability to predict ENSO precipitation patterns over the Southeast U.S. The inconsistency in the SST/precipitation correlations between the models can be attributed to differences in the 200-mb jet stream and 500-mb height anomalies. Slight differences in position and strength for both variables affect the teleconnection between tropical Pacific SSTs and Southeast.
Address Department of Meteorology
Corporate Author Thesis $loc['Master's thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 618
Permanent link to this record
 

 
Author (up) Podestá, G.; Letson, D.; Messina, C.; Royce, F.; Ferreyra, R.A.; Jones, J.; Hansen, J.; Llovet, I.; Grondona, M.; O'Brien, J.J.
Title Use of ENSO-related climate information in agricultural decision making in Argentina: a pilot experience Type $loc['typeJournal Article']
Year 2002 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 74 Issue 3 Pages 371-392
Keywords El Nino-Southern Oscillation; argentine pampas; climate forecasts; climate-adaptive management; linked modeling
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 491
Permanent link to this record
 

 
Author (up) Proshutinsky, A.; Krishfield, R.; Toole, J.M.; Timmermans, M.-L.; Williams, W.; Zimmermann, S.; Yamamoto-Kawai, M.; Armitage, T.W.K.; Dukhovskoy, D.; Golubeva, E.; Manucharyan, G.E.; Platov, G.; Watanabe, E.; Kikuchi, T.; Nishino, S.; Itoh, M.; Kang, S.-H.; Cho, K.-H.; Tateyama, K.; Zhao, J.
Title Analysis of the Beaufort Gyre Freshwater Content in 2003-2018 Type $loc['typeJournal Article']
Year 2019 Publication Abbreviated Journal J Geophys Res Oceans
Volume 124 Issue 12 Pages
Keywords Arctic Ocean; Beaufort Gyre; circulation; climate change; freshwater balance; modeling
Abstract Hydrographic data collected from research cruises, bottom-anchored moorings, drifting Ice-Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km(3) of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997-2018) accompanied by sea ice melt, a wind-forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice-Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year-to-year variability, or the more subtle interannual variations.
Address Physical Oceanography Laboratory Ocean University of China, Qingdao China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding strtoupper('3').strtolower('2055432'); strtoupper('P').strtolower('MC7003849') Approved $loc['no']
Call Number COAPS @ user @ Serial 1097
Permanent link to this record
 

 
Author (up) Proshutinsky, A.; Krishfield, R.; Toole, J.M.; Timmermans, M.-L.; Williams, W.; Zimmermann, S.; Yamamoto-Kawai, M.; Armitage, T.W.K.; Dukhovskoy, D.; Golubeva, E.; Manucharyan, G.E.; Platov, G.; Watanabe, E.; Kikuchi, T.; Nishino, S.; Itoh, M.; Kang, S.-H.; Cho, K.-H.; Tateyama, K.; Zhao, J.
Title Analysis of the Beaufort Gyre Freshwater Content in 2003-2018 Type $loc['typeJournal Article']
Year 2019 Publication Abbreviated Journal J Geophys Res Oceans
Volume 124 Issue 12 Pages 9658-9689
Keywords Arctic Ocean; Beaufort Gyre; circulation; climate change; freshwater balance; modeling
Abstract Hydrographic data collected from research cruises, bottom-anchored moorings, drifting Ice-Tethered Profilers, and satellite altimetry in the Beaufort Gyre region of the Arctic Ocean document an increase of more than 6,400 km(3) of liquid freshwater content from 2003 to 2018: a 40% growth relative to the climatology of the 1970s. This fresh water accumulation is shown to result from persistent anticyclonic atmospheric wind forcing (1997-2018) accompanied by sea ice melt, a wind-forced redirection of Mackenzie River discharge from predominantly eastward to westward flow, and a contribution of low salinity waters of Pacific Ocean origin via Bering Strait. Despite significant uncertainties in the different observations, this study has demonstrated the synergistic value of having multiple diverse datasets to obtain a more comprehensive understanding of Beaufort Gyre freshwater content variability. For example, Beaufort Gyre Observational System (BGOS) surveys clearly show the interannual increase in freshwater content, but without satellite or Ice-Tethered Profiler measurements, it is not possible to resolve the seasonal cycle of freshwater content, which in fact is larger than the year-to-year variability, or the more subtle interannual variations.
Address Physical Oceanography Laboratory Ocean University of China, Qingdao China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding strtoupper('3').strtolower('2055432'); strtoupper('P').strtolower('MC7003849') Approved $loc['no']
Call Number COAPS @ user @ Serial 1102
Permanent link to this record
 

 
Author (up) Roads, J.
Title International Research Institute/Applied Research Centers (IRI/ARCs) regional model intercomparison over South America Type $loc['typeJournal Article']
Year 2003 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.
Volume 108 Issue D14 Pages
Keywords Regional climate modeling; Brazil; South America
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 843
Permanent link to this record
 

 
Author (up) Rousset, C.; Houssais, M.-N.; Chassignet, E.P.
Title A multi-model study of the restratification phase in an idealized convection basin Type $loc['typeJournal Article']
Year 2009 Publication Ocean Modelling Abbreviated Journal Ocean Modelling
Volume 26 Issue 3-4 Pages 115-133
Keywords Baroclinic instability; Convection basin; Model intercomparison; Restratification; Eddies; Idealized simulations
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-5003 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 402
Permanent link to this record
 

 
Author (up) Samuelsen, A
Title Modeling the Effect of Eddies and Advection on the Lower Trophic Ecosystem in the Northeast Tropical Pacific Type $loc['typeManuscript']
Year 2005 Publication Abbreviated Journal
Volume Issue Pages
Keywords Physical-Biological Interactions, Marine Ecosystem Modeling, Pacific Ocean, Gulf Of Tehuantepec, Costa Rica Dome, Cross-Shelf Transport, Eddies
Abstract A medium complexity, nitrogen-based ecosystem model is developed in order to simulate the ecosystem in the northeast tropical Pacific. Several physical processes have major impact on the ecosystem in this region, most importantly intense wind jets along the coast and upwelling at the Costa Rica Dome (CRD). The ecosystem model is run “offline”, using a realistic physical ocean model hindcast as input. The physical model is a subdomain of the global Navy Coastal Ocean Model, which is a hybrid sigma-z level model. The model assimilates Modular Ocean Data Assimilation System temperature and salinity profiles derived from altimetry and sea surface temperature data. The model is forced by daily heat and momentum fluxes, and therefore captures short-term wind events such as the Tehuantepec jet. Because the model has high horizontal resolution (~1/8 degree) and assimilates sea surface height data, it has a realistic representation of eddies and mesoscale variability. The ecosystem model includes two nutrients (nitrate and ammonium), two size-classes of phytoplankton, two size-classes of zooplankton, and detritus. The model is run for 4 years from 1999 to 2002, with analyses focused on 2000-2002. The model is validated using SeaWiFS data and ship-based observations from the STAR-cruises (Stenella Abundance Research Project) of 1999 and 2000. The northernmost and most intense of the wind jets along Central America is the Tehuantepec jet. The Tehuantepec jet is responsible for upwelling large amounts of nutrient rich water south of the Gulf of Tehuantepec. The jet also occasionally produce large anti-cyclonic eddies that transport organic matter away from the coast. Because organic matter that is transported into the open ocean will eventually sink to the deep ocean, this has implications for the carbon export in this region. The model results are used to calculate cross-shelf fluxes in this region in order to estimate how much organic material is transported across the shelf break. Results show that at the Gulf of Tehuantepec there is high offshore export of organic material, particularly during eddy generation events, but also in fall. The highest export is on the order of 10 Mg C per meter of coastline per day and happens during eddy events. During these events there is a comparable onshore flux to the south of the gulf. Typically there is onshore flux to the south of the gulf during the summer. The model estimated transport away from the coast at the Gulf of Tehuantepec is 167 Tg C/year, and the onshore transport to the south of the gulf is 704 Tg C/year. The second subject of interest is the CRD. In this region, upwelling at the surface is caused by Ekman upwelling during the summer, although the dome is thought to be present at depth throughout the year. The doming of the isotherms below the thermocline is a result of vortex stretching and is decoupled from the wind-driven processes at the surface. A mass-balance budget is calculated at the CRD, and the horizontal and vertical fluxes are related to the abundance of plankton at the dome. There is upwelling (7.2X10-2 Sv ) at the dome throughout the year, but around the location of the dome (90° W), the upwelling is largest in the winter. Further west, input of nutrients from below is larger in the fall and summer. The results suggest that about 80% of the nitrate that is supplied to the dome during summer is actually brought up to the west of the dome and transported eastward by the North Equatorial Counter Current.
Address Department of Oceanography
Corporate Author Thesis $loc['Ph.D. thesis']
Publisher Florida State University Place of Publication Tallahassee, FL Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 591
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)