Records |
Author  |
Freeman, E.; Woodruff, S.D.; Worley, S.J.; Lubker, S.J.; Kent, E.C.; Angel, W.E.; Berry, D.I.; Brohan, P.; Eastman, R.; Gates, L.; Gloeden, W.; Ji, Z.; Lawrimore, J.; Rayner, N.A.; Rosenhagen, G.; Smith, S.R. |
Title |
ICOADS Release 3.0: a major update to the historical marine climate record |
Type |
$loc['typeJournal Article'] |
Year |
2017 |
Publication |
International Journal of Climatology |
Abbreviated Journal |
Int. J. Climatol. |
Volume |
37 |
Issue |
5 |
Pages |
2211-2232 |
Keywords |
marine meteorological data; ship data; buoy data; sea-surface temperature; sea-level pressure; humidity; metadata; ocean |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0899-8418 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
20 |
Permanent link to this record |
|
|
|
Author  |
McNaught, C. |
Title |
The Increasing Intensity and Frequency of ENSO and its Impacts to the Southeast U.S. |
Type |
$loc['typeManuscript'] |
Year |
2014 |
Publication |
|
Abbreviated Journal |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
ENSO; El-Nino; climate; meteorology; southeast climate; weather; time series; sea-surface temperatures; La-Nina |
Abstract |
|
Address |
Department of Earth, Ocean and Atmospheric Science |
Corporate Author |
|
Thesis |
$loc['Bachelor's thesis'] |
Publisher |
Florida State University |
Place of Publication |
Tallahassee, FL |
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ mfield @ |
Serial |
165 |
Permanent link to this record |
|
|
|
Author  |
Steffen, J.; Bourassa, M. |
Title |
Barrier Layer Development Local to Tropical Cyclones based on Argo Float Observations |
Type |
$loc['typeJournal Article'] |
Year |
2018 |
Publication |
Journal of Physical Oceanography |
Abbreviated Journal |
J. Phys. Oceanogr. |
Volume |
48 |
Issue |
9 |
Pages |
1951-1968 |
Keywords |
SEA-SURFACE TEMPERATURE; UPPER-OCEAN RESPONSE; NINO SOUTHERN-OSCILLATION; MIXED-LAYER; INDIAN-OCEAN; HEAT-BUDGET; NUMERICAL SIMULATIONS; HURRICANES; VARIABILITY; PACIFIC |
Abstract |
The objective of this study is to quantify barrier layer development due to tropical cyclone (TC) passage using Argo float observations of temperature and salinity. To accomplish this objective, a climatology of Argo float measurements is developed from 2001 to 2014 for the Atlantic, eastern Pacific, and central Pacific basins. Each Argo float sample consists of a prestorm and poststorm temperature and salinity profile pair. In addition, a no-TC Argo pair dataset is derived for comparison to account for natural ocean state variability and instrument sensitivity. The Atlantic basin shows a statistically significant increase in barrier layer thickness (BLT) and barrier layer potential energy (BLPE) that is largely attributable to an increase of 2.6 m in the post-TC isothermal layer depth (ITLD). The eastern Pacific basin shows no significant changes to any barrier layer characteristic, likely due to a shallow and highly stratified pycnocline. However, the near-surface layer freshens in the upper 30 m after TC passage, which increases static stability. Finally, the central Pacific has a statistically significant freshening in the upper 20-30 m that increases upper-ocean stratification by similar to 35%. The mechanisms responsible for increases in BLPE vary between the Atlantic and both Pacific basins; the Atlantic is sensitive to ITLD deepening, while the Pacific basins show near-surface freshening to be more important in barrier layer development. In addition, Argo data subsets are used to investigate the physical relationships between the barrier layer and TC intensity, TC translation speed, radial distance from TC center, and time after TC passage. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0022-3670 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
|
Approved |
$loc['no'] |
Call Number |
COAPS @ user @ |
Serial |
970 |
Permanent link to this record |
|
|
|
Author  |
Venugopal, T.; Ali, M.M.; Bourassa, M.A.; Zheng, Y.; Goni, G.J.; Foltz, G.R.; Rajeevan, M. |
Title |
Statistical Evidence for the Role of Southwestern Indian Ocean Heat Content in the Indian Summer Monsoon Rainfall |
Type |
$loc['typeJournal Article'] |
Year |
2018 |
Publication |
SCIENTIFIC REPORTS |
Abbreviated Journal |
Sci Rep |
Volume |
8 |
Issue |
1 |
Pages |
12092 |
Keywords |
SEA-SURFACE TEMPERATURE; EL-NINO; EQUATORIAL PACIFIC; IMPACT; PREDICTION; ENSO; DIPOLE; REGION; SST |
Abstract |
This study examines the benefit of using Ocean Mean Temperature (OMT) to aid in the prediction of the sign of Indian Summer Monsoon Rainfall (ISMR) anomalies. This is a statistical examination, rather than a process study. The thermal energy needed for maintaining and intensifying hurricanes and monsoons comes from the upper ocean, not just from the thin layer represented by sea surface temperature (SST) alone. Here, we show that the southwestern Indian OMT down to the depth of the 26 degrees C isotherm during January-March is a better qualitative predictor of the ISMR than SST. The success rate in predicting above- or below-average ISMR is 80% for OMT compared to 60% for SST. Other January-March mean climate indices (e.g., NINO3.4, Indian Ocean Dipole Mode Index, El Nino Southern Oscillation Modoki Index) have less predictability (52%, 48%, and 56%, respectively) than OMT percentage deviation (PD) (80%). Thus, OMT PD in the southwestern Indian Ocean provides a better qualitative prediction of ISMR by the end of March and indicates whether the ISMR will be above or below the climatological mean value. |
Address |
Ministry of Earth Sciences, Government of India, New Delhi, India |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2045-2322 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Funding |
strtoupper('3').strtolower('0108244'); strtoupper('P').strtolower('MC6092415') |
Approved |
$loc['no'] |
Call Number |
COAPS @ user @ |
Serial |
972 |
Permanent link to this record |