|   | 
Details
   web
Records
Author (up) Stukel, M.R.; Kelly, T.B.
Title The carbon: (234) Thorium ratios of sinking particles in the California current ecosystem 2: Examination of a thorium sorption, desorption, and particle transport model Type $loc['typeJournal Article']
Year 2019 Publication Marine Chemistry Abbreviated Journal Marine Chemistry
Volume 212 Issue Pages 1-15
Keywords POC concentration; sinking particles.; depth and relationship with water; phytoplankton
Abstract Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon: thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-4203 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1002
Permanent link to this record
 

 
Author (up) Stukel, M.R.; Ohman, M.D.; Kelly, T.B.; Biard, T.
Title The Roles of Suspension-Feeding and Flux-Feeding Zooplankton as Gatekeepers of Particle Flux Into the Mesopelagic Ocean in the Northeast Pacific Type $loc['typeJournal Article']
Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.
Volume 6 Issue Pages
Keywords biological pump; carbon export; remineralization length scale; mesozooplankton ecology; pteropods; marine biogeochemistry; sinking particles; marine snow
Abstract Zooplankton are important consumers of sinking particles in the ocean's twilight zone. However, the impact of different taxa depends on their feeding mode. In contrast to typical suspension-feeding zooplankton, flux-feeding taxa preferentially consume rapidly sinking particles that would otherwise penetrate into the deep ocean. To quantify the potential impact of two flux-feeding zooplankton taxa [Aulosphaeridae (Rhizaria), and Limacina helicina (euthecosome pteropod)] and the total suspension-feeding zooplankton community, we measured depth-stratified abundances of these organisms during six cruises in the California Current Ecosystem. Using allometric-scaling relationships, we computed the percentage of carbon flux intercepted by flux feeders and suspension feeders. These estimates were compared to direct measurements of carbon flux attenuation (CFA) made using drifting sediment traps and U-238-Th-234 disequilibrium. We found that CFA in the shallow twilight zone typically ranged from 500 to 1000 m mol organic C flux remineralized per 10-m vertical depth bin. This equated to approximately 6-10% of carbon flux remineralized/10 m. The two flux-feeding taxa considered in this study could account for a substantial proportion of this flux near the base of the euphotic zone. The mean flux attenuation attributable to Aulosphaeridae was 0.69%/10 m (median = 0.21%/10 m, interquartile range = 0.04-0.81%) at their depth of maximum abundance (similar to 100 m), which would equate to similar to 10% of total flux attenuation in this depth range. The maximum flux attenuation attributable to Aulosphaeridae reached 4.2%/10 m when these protists were most abundant. L. helicina, meanwhile, could intercept 0.45-1.6% of carbon flux/10 m, which was slightly greater (on average) than the Aulosphaeridae. In contrast, suspension-feeding zooplankton in the mesopelagic (including copepods, euphausiids, appendicularians, and ostracods) had combined clearance rates of 2-81 L m(-3) day(-1) (mean of 19.6 L m(-3) day(-1)). This implies a substantial impact on slowly sinking particles, but a negligible impact on the presumably rapidly sinking fecal pellets that comprised the majority of the material collected in sediment traps. Our results highlight the need for a greater research focus on the many taxa that potentially act as flux feeders in the oceanic twilight zone.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-7745 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1066
Permanent link to this record
 

 
Author (up) Sun, J.; Wu, Z.
Title Isolating spatiotemporally local mixed Rossby-gravity waves using multi-dimensional ensemble empirical mode decomposition Type $loc['typeJournal Article']
Year 2019 Publication Climate Dynamics Abbreviated Journal Clim Dyn
Volume Issue 3-4 Pages 1383-1405
Keywords
Abstract Tropical waves have relatively large amplitudes in and near convective systems, attenuating as they propagate away from the area where they are generated due to the dissipative nature of the atmosphere. Traditionally, nonlocal analysis methods, such as those based on the Fourier transform, are applied to identify tropical waves. However, these methods have the potential to lead to the misidentification of local wavenumbers and spatial locations of local wave activities. To address this problem, we propose a new method for analyzing tropical waves, with particular focus placed on equatorial mixed Rossby-gravity (MRG) waves. The new tropical wave analysis method is based on the multi-dimensional ensemble empirical mode decomposition and a novel spectral representation based on spatiotemporally local wavenumber, frequency, and amplitude of waves. We first apply this new method to synthetic data to demonstrate the advantages of the method in revealing characteristics of MRG waves. We further apply the method to reanalysis data (1) to identify and isolate the spatiotemporally heterogeneous MRG waves event by event, and (2) to quantify the spatial inhomogeneity of these waves in a wavenumber-frequency-energy diagram. In this way, we reveal the climatology of spatiotemporal inhomogeneity of MRG waves and summarize it in wavenumber-frequency domain: The Indian Ocean is dominated by MRG waves in the period range of 8–12 days; the western Pacific Ocean consists of almost equal energy distribution of MRG waves in the period ranges of 3–6 and 8–12 days, respectively; and the eastern tropical Pacific Ocean and the tropical Atlantic Ocean are dominated by MRG waves in the period range of 3–6 days. The zonal wavenumbers mostly fall within the band of 4–15, with Indian Ocean has larger portion of higher wavenumber (smaller wavelength components) MRG waves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-7575 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1093
Permanent link to this record
 

 
Author (up) Villas Bôas, A.B.; Ardhuin, F.; Ayet, A.; Bourassa, M.A.; Brandt, P.; Chapron, B.; Cornuelle, B.D.; Farrar, J.T.; Fewings, M.R.; Fox-Kemper, B.; Gille, S.T.; Gommenginger, C.; Heimbach, P.; Hell, M.C.; Li, Q.; Mazloff, M.R.; Merrifield, S.T.; Mouche, A.; Rio, M.H.; Rodriguez, E.; Shutler, J.D.; Subramanian, A.C.; Terrill, E.J.; Tsamados, M.; Ubelmann, C.; van Sebille, E.
Title Integrated Observations of Global Surface Winds, Currents, and Waves: Requirements and Challenges for the Next Decade Type $loc['typeJournal Article']
Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.
Volume 6 Issue Pages
Keywords
Abstract Ocean surface winds, currents, and waves play a crucial role in exchanges of momentum, energy, heat, freshwater, gases, and other tracers between the ocean, atmosphere, and ice. Despite surface waves being strongly coupled to the upper ocean circulation and the overlying atmosphere, efforts to improve ocean, atmospheric, and wave observations and models have evolved somewhat independently. From an observational point of view, community efforts to bridge this gap have led to proposals for satellite Doppler oceanography mission concepts, which could provide unprecedented measurements of absolute surface velocity and directional wave spectrum at global scales. This paper reviews the present state of observations of surface winds, currents, and waves, and it outlines observational gaps that limit our current understanding of coupled processes that happen at the air-sea-ice interface. A significant challenge for the coming decade of wind, current, and wave observations will come in combining and interpreting measurements from (a) wave-buoys and high-frequency radars in coastal regions, (b) surface drifters and wave-enabled drifters in the open-ocean, marginal ice zones, and wave-current interaction �hot-spots,� and (c) simultaneous measurements of absolute surface currents, ocean surface wind vector, and directional wave spectrum from Doppler satellite sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-7745 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1064
Permanent link to this record
 

 
Author (up) Vinayachandran, P. N.; Davidson, Fraser; Chassignet, E. P.
Title Towards joint assessments, modern capabilities and new links for ocean prediction systems Type $loc['typeJournal Article']
Year 2020 Publication Bulletin of the American Meteorological Society Abbreviated Journal Bull. Amer. Meteor. Soc.
Volume 101 Issue 4 Pages
Keywords
Abstract Approximately 260 individuals from forecasting centers, research laboratories, academia, and industry representing 40 countries met to discuss recent developments in operational oceanography and brainstorm about the future directions of ocean prediction services.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1091
Permanent link to this record
 

 
Author (up) Wang, S.; Kranz, S.A.; Kelly, T.B.; Song, H.; Stukel, M.R.; Cassar, N.
Title Lagrangian Studies of Net Community Production: The Effect of Diel and Multiday Nonsteady State Factors and Vertical Fluxes on O2/Ar in a Dynamic Upwelling Region Type $loc['typeJournal Article']
Year 2020 Publication Journal of Geophysical Research: Biogeosciences Abbreviated Journal J. Geophys. Res. Biogeosci.
Volume 125 Issue 6 Pages e2019JG005569
Keywords net community production; O2/Ar; California Current Ecosystem; Lagrangian measurements; vertical fluxes; nonsteady state
Abstract The ratio of dissolved oxygen to argon in seawater is frequently employed to estimate rates of net community production (NCP) in the oceanic mixed layer. The in situ O2/Ar‐based method accounts for many physical factors that influence oxygen concentrations, permitting isolation of the biological oxygen signal produced by the balance of photosynthesis and respiration. However, this technique traditionally relies upon several assumptions when calculating the mixed‐layer O2/Ar budget, most notably the absence of vertical fluxes of O2/Ar and the principle that the air‐sea gas exchange of biological oxygen closely approximates net productivity rates. Employing a Lagrangian study design and leveraging data outputs from a regional physical oceanographic model, we conducted in situ measurements of O2/Ar in the California Current Ecosystem in spring 2016 and summer 2017 to evaluate these assumptions within a �worst‐case� field environment. Quantifying vertical fluxes, incorporating nonsteady state changes in O2/Ar, and comparing NCP estimates evaluated over several day versus longer timescales, we find differences in NCP metrics calculated over different time intervals to be considerable, also observing significant potential effects from vertical fluxes, particularly advection. Additionally, we observe strong diel variability in O2/Ar and NCP rates at multiple stations. Our results reemphasize the importance of accounting for vertical fluxes when interpreting O2/Ar‐derived NCP data and the potentially large effect of nonsteady state conditions on NCP evaluated over shorter timescales. In addition, diel cycles in surface O2/Ar can also bias interpretation of NCP data based on local productivity and the time of day when measurements were made.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-8953 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1114
Permanent link to this record
 

 
Author (up) Xu, X.; Chassignet, E.P.; Firing, Y.L.; Donohue, K.
Title Antarctic Circumpolar Current transport through Drake Passage: What can we learn from comparing high-resolution model results to observations? Type $loc['typeJournal Article']
Year 2020 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 125 Issue 7 Pages
Keywords
Abstract Uncertainty exists in the time‐mean total transport of the Antarctic Circumpolar Current (ACC), the world�s strongest ocean current. The two most recent observational programs in Drake Passage, DRAKE and cDrake, yielded transports of 141 and 173.3 Sv, respectively. In this paper, we use a realistic 1/12° global ocean simulation to interpret these observational estimates and reconcile their differences. We first show that the modeled ACC transport in the upper 1000 m is in excellent agreement with repeat shipboard acoustic Doppler current profiler (SADCP) transects and that the exponentially decaying transport profile in the model is consistent with the profile derived from repeat hydrographic data. By further comparing the model results to the cDrake and DRAKE observations, we argue that the modeled 157.3 Sv transport, i.e. approximately the average of the cDrake and DRAKE estimates, is actually representative of the time‐mean ACC transport through the Drake Passage. The cDrake experiment overestimated the barotropic contribution in part because the array undersampled the deep recirculation southwest of the Shackleton Fracture Zone, whereas the surface geostrophic currents used in the DRAKE estimate yielded a weaker near‐surface transport than implied by the SADCP data. We also find that the modeled baroclinic and barotropic transports are not correlated, thus monitoring either baroclinic or barotropic transport alone may be insufficient to assess the temporal variability of the total ACC transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1107
Permanent link to this record
 

 
Author (up) Yu, B.; Seed, A.; Pu, L.; Malone, T.
Title Integration of weather radar data into a raster GIS framework for improved flood estimation Type $loc['typeJournal Article']
Year 2019 Publication Atmospheric Science Letters Abbreviated Journal Atmos. Sci. Lett.
Volume 6 Issue 1 Pages
Keywords
Abstract We present in this paper the interannual variability of seasonal temperature and rainfall in the Indian meteorological subdivisions (IMS) for boreal winter and summer seasons that take in to account the varying length of the seasons.Our study reveals that accounting for the variations in the length of the sea-sons produces stronger teleconnections between the seasonal anomalies of surface temperature and rainfall over India with corresponding sea surface temperature anomalies of the tropical Oceans (especially over the northern Indian and the equatorial Pacific Oceans) compared to the same teleconnections from fixed length seasons over the IMS. It should be noted that the IMS show significant spatial heterogeneity in these teleconnections
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-261X ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1069
Permanent link to this record
 

 
Author (up) Zou, M.; Xiong, X.; Wu, Z.; Li, S.; Zhang, Y.; Chen, L.
Title Increase of Atmospheric Methane Observed from Space-Borne and Ground-Based Measurements Type $loc['typeJournal Article']
Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 11 Issue 8 Pages
Keywords Methane increase trend; Boundary layer; Mid-upper troposphere; Satellite; AIRS
Abstract It has been found that the concentration of atmospheric methane (CH4) has rapidly increased since 2007 after a decade of nearly constant concentration in the atmosphere. As an important greenhouse gas, such an increase could enhance the threat of global warming. To better quantify this increasing trend, a novel statistic method, i.e. the Ensemble Empirical Mode Decomposition (EEMD) method, was used to analyze the CH4 trends from three different measurements: the mid-upper tropospheric CH4 (MUT) from the space-borne measurements by the Atmospheric Infrared Sounder (AIRS), the CH4 in the marine boundary layer (MBL) from NOAA ground-based in-situ measurements, and the column-averaged CH4 in the atmosphere (X-CH4) from the ground-based up-looking Fourier Transform Spectrometers at Total Carbon Column Observing Network (TCCON) and the Network for the Detection of Atmospheric Composition Change (NDACC). Comparison of the CH4 trends in the mid-upper troposphere, lower troposphere, and the column average from these three data sets shows that, overall, these trends agree well in capturing the abrupt CH4 increase in 2007 (the first peak) and an even faster increase after 2013 (the second peak) over the globe. The increased rates of CH4 in the MUT, as observed by AIRS, are overall smaller than CH4 in MBL and the column-average CH4. During 2009-2011, there was a dip in the increase rate for CH4 in MBL, and the MUT-CH4 increase rate was almost negligible in the mid-high latitude regions. The increase of the column-average CH4 also reached the minimum during 2009-2011 accordingly, suggesting that the trends of CH4 are not only impacted by the surface emission, however that they also may be impacted by other processes like transport and chemical reaction loss associated with [OH]. One advantage of the EEMD analysis is to derive the monthly rate and the results show that the frequency of the variability of CH4 increase rates in the mid-high northern latitude regions is larger than those in the tropics and southern hemisphere.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1055
Permanent link to this record
 

 
Author (up) Zou, S.; Bower, A.; Furey, H.; Susan Lozier, M.; Xu, X.
Title Redrawing the Iceland-Scotland Overflow Water pathways in the North Atlantic Type $loc['typeJournal Article']
Year 2020 Publication Abbreviated Journal Nat Commun
Volume 11 Issue 1 Pages 1890
Keywords
Abstract Iceland-Scotland Overflow Water (ISOW) is a primary deep water mass exported from the Norwegian Sea into the North Atlantic as part of the global Meridional Overturning Circulation. ISOW has historically been depicted as flowing counter-clockwise in a deep boundary current around the subpolar North Atlantic, but this single-boundary-following pathway is being challenged by new Lagrangian observations and model simulations. We show here that ISOW leaves the boundary and spreads into the interior towards the central Labrador and Irminger basins after flowing through the Charlie-Gibbs Fracture Zone. We also describe a newly observed southward pathway of ISOW along the western flank of the Mid-Atlantic Ridge. The partitioning of these pathways is shown to be influenced by deep-reaching eddies and meanders of the North Atlantic Current. Our results, in tandem with previous studies, call for a revision in the historical depiction of ISOW pathways throughout the North Atlantic.
Address Center for Ocean-Atmosphere Prediction Studies, Florida State University, Tallahassee, FL, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Funding strtoupper('3').strtolower('2313002'); strtoupper('P').strtolower('MC7170894') Approved $loc['no']
Call Number COAPS @ user @ Serial 1105
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)