|   | 
Details
   web
Records
Author (up) Verschell, M.A.; Bourassa, M.A.; Weissman, D.E.; O'Brien, J.J.
Title Ocean model validation of the NASA scatterometer winds Type $loc['typeJournal Article']
Year 1999 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res.
Volume 104 Issue C5 Pages 11359-11373
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 529
Permanent link to this record
 

 
Author (up) Weihs, R.R.; Bourassa, M.A.
Title Modeled diurnally varying sea surface temperatures and their influence on surface heat fluxes Type $loc['typeJournal Article']
Year 2014 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 119 Issue 7 Pages 4101-4123
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 150
Permanent link to this record
 

 
Author (up) Xu, X.; Bower, A.; Furey, H.; Chassignet, E.P.
Title Variability of the Iceland-Scotland Overflow Water Transport Through the Charlie-Gibbs Fracture Zone: Results From an Eddying Simulation and Observations Type $loc['typeJournal Article']
Year 2018 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 123 Issue 8 Pages 5808-5823
Keywords Iceland; Scotland overflow water; Charlie; Gibbs fracture zone; variability; volume transport; eddying simulation
Abstract Observations show that the westward transport of the Iceland‐Scotland overflow water (ISOW) through the Charlie‐Gibbs Fracture Zone (CGFZ) is highly variable. This study examines (a) where this variability comes from and (b) how it is related to the variability of ISOW transport at upstream locations in the Iceland Basin and other ISOW flow pathways. The analyses are based on a 35‐year 1/12° eddying Atlantic simulation that represents well the main features of the observed ISOW in the area of interest, in particular, the transport variability through the CGFZ. The results show that (a) the variability of the ISOW transport is closely correlated with that of the barotropic transports in the CGFZ associated with the meridional displacement of the North Atlantic Current front and is possibly induced by fluctuations of large‐scale zonal wind stress in the Western European Basin east of the CGFZ; (b) the variability of the ISOW transport is increased by a factor of 3 from the northern part of the Iceland Basin to the CGFZ region and transport time series at these two locations are not correlated, further suggesting that the variability at the CGFZ does not come from the upstream source; and (c) the variability of the ISOW transport at the CGFZ is strongly anticorrelated to that of the southward ISOW transport along the eastern flank of the Mid‐Atlantic Ridge, suggesting an out‐of‐phase covarying transport between these two ISOW pathways.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 952
Permanent link to this record
 

 
Author (up) Xu, X.; Bower, A.; Furey, H.; Chassignet, E.P.
Title Variability of the Iceland-Scotland Overflow Water Transport Through the Charlie-Gibbs Fracture Zone: Results From an Eddying Simulation and Observations Type $loc['typeJournal Article']
Year 2018 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume Issue 8 Pages
Keywords
Abstract Observations show that the westward transport of the Iceland‐Scotland overflow water (ISOW) through the Charlie‐Gibbs Fracture Zone (CGFZ) is highly variable. This study examines (a) where this variability comes from and (b) how it is related to the variability of ISOW transport at upstream locations in the Iceland Basin and other ISOW flow pathways. The analyses are based on a 35‐year 1/12° eddying Atlantic simulation that represents well the main features of the observed ISOW in the area of interest, in particular, the transport variability through the CGFZ. The results show that (a) the variability of the ISOW transport is closely correlated with that of the barotropic transports in the CGFZ associated with the meridional displacement of the North Atlantic Current front and is possibly induced by fluctuations of large‐scale zonal wind stress in the Western European Basin east of the CGFZ; (b) the variability of the ISOW transport is increased by a factor of 3 from the northern part of the Iceland Basin to the CGFZ region and transport time series at these two locations are not correlated, further suggesting that the variability at the CGFZ does not come from the upstream source; and (c) the variability of the ISOW transport at the CGFZ is strongly anticorrelated to that of the southward ISOW transport along the eastern flank of the Mid‐Atlantic Ridge, suggesting an out‐of‐phase covarying transport between these two ISOW pathways.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1023
Permanent link to this record
 

 
Author (up) Xu, X.; Chassignet, E.P.; Firing, Y.L.; Donohue, K.
Title Antarctic Circumpolar Current transport through Drake Passage: What can we learn from comparing high-resolution model results to observations? Type $loc['typeJournal Article']
Year 2020 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 125 Issue 7 Pages
Keywords
Abstract Uncertainty exists in the time‐mean total transport of the Antarctic Circumpolar Current (ACC), the world�s strongest ocean current. The two most recent observational programs in Drake Passage, DRAKE and cDrake, yielded transports of 141 and 173.3 Sv, respectively. In this paper, we use a realistic 1/12° global ocean simulation to interpret these observational estimates and reconcile their differences. We first show that the modeled ACC transport in the upper 1000 m is in excellent agreement with repeat shipboard acoustic Doppler current profiler (SADCP) transects and that the exponentially decaying transport profile in the model is consistent with the profile derived from repeat hydrographic data. By further comparing the model results to the cDrake and DRAKE observations, we argue that the modeled 157.3 Sv transport, i.e. approximately the average of the cDrake and DRAKE estimates, is actually representative of the time‐mean ACC transport through the Drake Passage. The cDrake experiment overestimated the barotropic contribution in part because the array undersampled the deep recirculation southwest of the Shackleton Fracture Zone, whereas the surface geostrophic currents used in the DRAKE estimate yielded a weaker near‐surface transport than implied by the SADCP data. We also find that the modeled baroclinic and barotropic transports are not correlated, thus monitoring either baroclinic or barotropic transport alone may be insufficient to assess the temporal variability of the total ACC transport.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ user @ Serial 1107
Permanent link to this record
 

 
Author (up) Xu, X.; Chassignet, E.P.; Johns, W.E.; Schmitz Jr, W.J.; Metzger, E.J.
Title Intraseasonal to interannual variability of the Atlantic meridional overturning circulation from eddy-resolving simulations and observations Type $loc['typeJournal Article']
Year 2014 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 119 Issue 8 Pages 5140-5159
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 152
Permanent link to this record
 

 
Author (up) Yu, L.; Jin, X.
Title Confidence and sensitivity study of the OAFlux multisensor synthesis of the global ocean surface vector wind from 1987 onward Type $loc['typeJournal Article']
Year 2014 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 119 Issue 10 Pages 6842-6862
Keywords remote sensing of ocean surface winds; scatterometer; passive microwave radiometer; error analysis
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 172
Permanent link to this record
 

 
Author (up) Yu, L.; Jin, X.
Title Insights on the OAFlux ocean surface vector wind analysis merged from scatterometers and passive microwave radiometers (1987 onward) Type $loc['typeJournal Article']
Year 2014 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans
Volume 119 Issue 8 Pages 5244-5269
Keywords remote sensing; climate record of ocean surface vector wind; scatterometer; passive microwave radiometer; mesoscale air-sea interaction
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-9275 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 173
Permanent link to this record
 

 
Author (up) Yu, L.; Jin, X.
Title Buoy perspective of a high-resolution global ocean vector wind analysis constructed from passive radiometers and active scatterometers (1987-present) Type $loc['typeJournal Article']
Year 2012 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res.
Volume 117 Issue C11 Pages
Keywords OAFlux; ocean vector; satellite-based; wind analysis
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 272
Permanent link to this record
 

 
Author (up) Zheng, Y.; Lin, J.-L.; Shinoda, T.
Title The equatorial Pacific cold tongue simulated by IPCC AR4 coupled GCMs: Upper ocean heat budget and feedback analysis Type $loc['typeJournal Article']
Year 2012 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res.
Volume 117 Issue C5 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0148-0227 ISBN Medium
Area Expedition Conference
Funding Approved $loc['no']
Call Number COAPS @ mfield @ Serial 250
Permanent link to this record

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)