Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dukhovskoy, D. S.; Morey, S. L.; O'Brien, J. J. openurl 
  Title Topographic Rossby Waves in a Z-Level Ocean Model Type $loc['typeReport']
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages 03.05-03.06  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher World Meteorological Organization Place of Publication Geneva, Switzerland Editor Cote, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Research Activities in Atmospheric and Ocean Modeling, Report No. 35 Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding ONR, NASA Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 903  
Permanent link to this record
 

 
Author Dukhovskoy, D. S.; Morey, S. L.; O'Brien, J. J. openurl 
  Title Topographic Rossby waves in a z-level ocean model Type $loc['typeMagazine Article']
  Year 2005 Publication Eos Trans. AGU Abbreviated Journal  
  Volume 86 Issue 18 Pages Jt. Assem. Suppl., Abstract OS22A-06  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding ONR, NASA Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 909  
Permanent link to this record
 

 
Author Dukhovskoy, D. S.; Morey, S. L.; O'Brien, J. J. openurl 
  Title Baroclinic topographic waves on the Nicaragua Shelf generated by tropical cyclones Type $loc['typeReport']
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher World Meteorological Organization Place of Publication Geneva, Switzerland Editor Cote, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Research Activities in Atmospheric and Ocean Modeling, Report No. 36 Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding ONR, NASA Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 924  
Permanent link to this record
 

 
Author Morey, S. L.; Bourassa, M. A.; Dukhovskoy, D. S.; O'Brien, J. J. openurl 
  Title Modeling the impacts of remote forcing on hurricane storm surge Type $loc['typeReport']
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher World Meteorological Organization Place of Publication Geneva, Switzerland Editor Cote, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Research Activities in Atmospheric and Ocean Modeling, Report No. 36 Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NOAA Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 926  
Permanent link to this record
 

 
Author Morey, S. L.; Wienders, N.; Dukhovskoy, D. S.; Bourassa, M. A. url  openurl
  Title Impact of Stokes Drift on Measurements of Surface Currents from Drifters and HF Radar Type $loc['typeAbstract']
  Year 2018 Publication American Geophysical Union Abbreviated Journal AGU  
  Volume Fall Meeting Issue Pages  
  Keywords 3307 Boundary layer processes, ATMOSPHERIC PROCESSESDE: 4504 Air/sea interactions, OCEANOGRAPHY: PHYSICALDE: 4560 Surface waves and tides, OCEANOGRAPHY: PHYSICALDE: 4572 Upper ocean and mixed layer processes, OCEANOGRAPHY: PHYSICAL  
  Abstract Concurrent measurements by surface drifters of different configurations and HF radar reveal substantial differences in estimates of the near-surface seawater velocity. On average, speeds of small ultra-thin (5 cm) drifters are significantly greater than co-located drifters with a traditional shallow drogue design, while velocity measurements from the drogued drifters closely match HF radar velocity estimates. Analysis of directional wave spectra measurements from a nearby buoy reveals that Stokes drift accounts for much of the difference between the velocity measurements from the drogued drifters and the ultra-thin drifters, except during times of wave breaking. Under wave breaking conditions, the difference between the ultra-thin drifter velocity and the drogued drifter velocity is much less than the computed Stokes drift. The results suggest that surface currents measured by more common approaches or simulated in models may underrepresent the velocity at the very surface of the ocean that is important for determining momentum and enthalpy fluxes between the ocean and atmosphere and for estimating transport of material at the ocean surface. However, simply adding an estimate of Stokes drift may also not be an appropriate method for estimating the true surface velocity from models or measurements from drogued drifters or HF radar under all sea conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1008  
Permanent link to this record
 

 
Author Morrison, T.; Dukhovskoy, D. S.; McClean, J.; Gille, S. T.; Chassignet, E. url  openurl
  Title Causes of the anomalous heat flux onto the Greenland continental shelf Type $loc['typeAbstract']
  Year 2018 Publication American Geophysical Union Abbreviated Journal AGU  
  Volume Fall Meeting Issue Pages  
  Keywords 0726 Ice sheets, CRYOSPHEREDE: 4207 Arctic and Antarctic oceanography, OCEANOGRAPHY: GENERALDE: 4215 Climate and interannual variability, OCEANOGRAPHY: GENERALDE: 4255 Numerical modeling, OCEANOGRAPHY: GENERAL  
  Abstract On the continental shelf around Greenland, warm-salty Atlantic water at depth fills the deep narrow fjords where Greenland's tidewater glaciers terminate. Changes in the quantity or properties of this water mass starting in the mid 1990s is thought to be largely responsible for increased ocean-driven melting of the Greenland Ice Sheet. Using high-resolution (nominal 0.1-degree) ocean circulation models we cannot accurately resolve small-scale processes on the shelf or within fjords. However, we can assess changes in the flux of heat via Atlantic water onto the continental shelf. To understand the causes of the anomalous heat that has reached the shelf we examine heat content of subtropical gyre water and shifts in the North Atlantic and Atlantic Multidecadal Oscillations.

We compare changes in heat transport in two eddy permitting simulations: a global 0.1 degree (5-7km around Greenland) resolution coupled hindcast (1970-2009) simulation of the Parallel Ocean Program (POP) and a regional 0.08 degree (3-5km around Greenland) resolution coupled HYbrid Coordinate Ocean Model (HYCOM) hindcast (1993-2016) simulation. Both models are coupled to the Los Alamos National Laboratory Community Ice CodE version 4 and forced by atmospheric reanalysis fluxes. In both models we look for processes that could explain the increase in heat; processes that are present in both are likely to be robust causes of warming.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1009  
Permanent link to this record
 

 
Author Zheng, Y.; Bourassa, M. A.; Dukhovskoy, D. S. url  openurl
  Title Upper-Ocean Processes Controlling the Sea Surface Temperature in the Western Gulf of Mexico Type $loc['typeAbstract']
  Year 2018 Publication American Geophysical Union Abbreviated Journal AGU  
  Volume Fall Meeting Issue Pages  
  Keywords 4299 General or miscellaneous, OCEANOGRAPHY: GENERAL  
  Abstract This study examines the upper-ocean processes controlling the mixed layer temperature in the western Gulf of Mexico (GOM) through estimating the contributing terms in the heat equation, with an emphasis on eddies' role. The major heat contributing terms for the upper GOM were estimated using two ocean reanalysis datasets: an eddy-resolving HYbrid Coordinate Ocean Model (HYCOM) and a Simple Ocean Data Assimilation (SODA). Analysis of net surface heat fluxes from four datasets reveals that the long-term mean net surface heat flux cools the northern GOM and warms the southern GOM. Two regions are focused for analysis: an eddy-rich region where LCEs are energetic, and the southwestern Gulf where eddy activity is relatively weak and the features of near surface temperature differ from the eddy-rich region. An eddy-rich region in the western GOM is defined based on the eddy kinetic energy derived from satellite sea surface heights. The long-term mean horizontal heat advection causes a weak warming over most of the eddy rich region, partly attributed to the flow-temperature configuration that the long-term and seasonally mean flow is nearly parallel to the corresponding mean isotherms. By contrast, the temporal mean vertical heat advection causes a strong warming in the eddy rich region, partly balancing the cooling caused by net surface heat flux. The temporal mean eddy heat flux convergence in the western GOM, whose positive and negative values are not small at some locations, appears heterogeneous in space, resulting in a small term for the western GOM when area averaged. The persistent warm water in the southwestern Gulf is primarily caused by the net warming from net surface heat flux rather than from eddies and heat advection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1007  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)