Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
  Record Links
Author Parfitt, R.; Ummenhofer, C.C.; Buckley, B.M.; Hansen, K.G.; D'Arrigo, R.D. url  doi
  Title Distinct seasonal climate drivers revealed in a network of tree-ring records from Labrador, Canada Type $loc['typeJournal Article']
  Year 2020 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 54 Issue 3-4 Pages 1897-1911  
  Abstract Traditionally, high-latitude dendroclimatic studies have focused on measurements of total ring width (RW), with the maximum density of the latewood (MXD) serving as a complementary variable. Whilst MXD has typically improved the strength of the growing season climate connection over that of RW, its measurements are costly and time-consuming. Recently, a less costly and more time-efficient technique to extract density measurements has emerged, based on lignin's propensity to absorb blue light. This Blue Intensity (BI) methodology is based on image analyses of finely-sanded core samples, and the relative ease with which density measurements can be extracted allows for significant increases in spatio-temporal sample depth. While some studies have attempted to combine RW and MXD as predictors for summer temperature reconstructions, here we evaluate a systematic comparison of the climate signal for RW and latewood BI (LWBI) separately, using a recently updated and expanded tree ring database for Labrador, Canada. We demonstrate that while RW responds primarily to climatic drivers earlier in the growing season (January-April), LWBI is more responsive to climate conditions during late spring and summer (May-August). Furthermore, RW appears to be driven primarily by large-scale atmospheric dynamics associated with the Pacific North American pattern, whilst LWBI is more closely associated with local climate conditions, themselves linked to the behaviour of the Atlantic Multidecadal Oscillation. Lastly, we demonstrate that anomalously wide or narrow growth rings consistently respond to the same climate drivers as average growth years, whereas the sensitivity of LWBI to extreme climate conditions appears to be enhanced.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1119  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)