Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Stukel, M.R.; Benitez-Nelson, C.R.; Decima, M.; Taylor, A.G.; Buchwald, C.; Landry, M.R. url  doi
openurl 
  Title The biological pump in the Costa Rica Dome: an open-ocean upwelling system with high new production and low export Type $loc['typeJournal Article']
  Year 2016 Publication Journal of Plankton Research Abbreviated Journal J Plankton Res  
  Volume 38 Issue 2 Pages 348-365  
  Keywords Eastern Tropical Pacific; biogeochemistry; carbon flux; nutrients; plankton  
  Abstract The Costa Rica Dome is a picophytoplankton-dominated, open-ocean upwelling system in the Eastern Tropical Pacific that overlies the ocean's largest oxygen minimum zone. To investigate the efficiency of the biological pump in this unique area, we used shallow (90-150 m) drifting sediment traps and 234Th:238U deficiency measurements to determine export fluxes of carbon, nitrogen and phosphorus in sinking particles. Simultaneous measurements of nitrate uptake and shallow water nitrification allowed us to assess the equilibrium balance of new and export production over a monthly timescale. While f-ratios (new:total production) were reasonably high (0.36 +/- 0.12, mean +/- standard deviation), export efficiencies were considerably lower. Sediment traps suggested e-ratios (export/14C-primary production) at 90-100 m ranging from 0.053 to 0.067. ThE-ratios (234Th disequilibrium-derived export) ranged from 0.038 to 0.088. C:N and N:P stoichiometries of sinking material were both greater than canonical (Redfield) ratios or measured C:N of suspended particulates, and they increased with depth, suggesting that both nitrogen and phosphorus were preferentially remineralized from sinking particles. Our results are consistent with an ecosystem in which mesozooplankton play a major role in energy transfer to higher trophic levels but are relatively inefficient in mediating vertical carbon flux to depth, leading to an imbalance between new production and sinking flux.  
  Address Scripps Institution of Oceanography , University of California at San Diego , La Jolla, CA 92037 , USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-7873 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:27275035; PMCID:PMC4889986 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 90  
Permanent link to this record
 

 
Author Zeng, H.; Chambers, J.Q.; Negron-Juarez, R.I.; Hurtt, G.C.; Baker, D.B.; Powell, M.D. url  doi
openurl 
  Title Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to 2000 Type $loc['typeJournal Article']
  Year 2009 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A  
  Volume 106 Issue 19 Pages 7888-7892  
  Keywords Biodiversity; Biomass; Carbon; *Cyclonic Storms; Ecosystem; Greenhouse Effect; Models, Statistical; Southeastern United States; *Trees; United States  
  Abstract Tropical cyclones cause extensive tree mortality and damage to forested ecosystems. A number of patterns in tropical cyclone frequency and intensity have been identified. There exist, however, few studies on the dynamic impacts of historical tropical cyclones at a continental scale. Here, we synthesized field measurements, satellite image analyses, and empirical models to evaluate forest and carbon cycle impacts for historical tropical cyclones from 1851 to 2000 over the continental U.S. Results demonstrated an average of 97 million trees affected each year over the entire United States, with a 53-Tg annual biomass loss, and an average carbon release of 25 Tg y(-1). Over the period 1980-1990, released CO(2) potentially offset the carbon sink in forest trees by 9-18% over the entire United States. U.S. forests also experienced twice the impact before 1900 than after 1900 because of more active tropical cyclones and a larger extent of forested areas. Forest impacts were primarily located in Gulf Coast areas, particularly southern Texas and Louisiana and south Florida, while significant impacts also occurred in eastern North Carolina. Results serve as an important baseline for evaluating how potential future changes in hurricane frequency and intensity will impact forest tree mortality and carbon balance.  
  Address Department of Ecology and Evolutionary Biology, Tulane University, 400 Boggs Center, New Orleans, LA 70118, USA. hzeng@tulane.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:19416842; PMCID:PMC2683102 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 658  
Permanent link to this record
 

 
Author Stukel, M.R.; Kahru, M.; Benitez-Nelson, C.R.; Décima, M.; Goericke, R.; Landry, M.R.; Ohman, M.D. url  doi
openurl 
  Title Using Lagrangian-based process studies to test satellite algorithms of vertical carbon flux in the eastern North Pacific Ocean Type $loc['typeJournal Article']
  Year 2015 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 120 Issue 11 Pages 7208-7222  
  Keywords satellite-derived export; carbon export; model algorithms; mesozooplankton grazing; sinking particles; gravitational flux  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 113  
Permanent link to this record
 

 
Author Brzezinski, M.A.; Krause, J.W.; Bundy, R.M.; Barbeau, K.A.; Franks, P.; Goericke, R.; Landry, M.R.; Stukel, M.R. url  doi
openurl 
  Title Enhanced silica ballasting from iron stress sustains carbon export in a frontal zone within the California Current Type $loc['typeJournal Article']
  Year 2015 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 120 Issue 7 Pages 4654-4669  
  Keywords phytoplankton; diatoms; iron limitation; nutrient ratios; nutrient stoichiometry; carbon export  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 97  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)