Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ali, A.; Christensen, K.H.; Breivik, Ø.; Malila, M.; Raj, R.P.; Bertino, L.; Chassignet, E.P.; Bakhoday-Paskyabi, M. url  doi
openurl 
  Title A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 137 Issue Pages 76-97  
  Keywords Langmuir mixing parameterization Mixed layer depth Sea surface temperature Ocean heat content Stokes penetration depth  
  Abstract Five different parameterizations of Langmuir turbulence (LT) effect are investigated in a realistic model of the North Atlantic and Arctic using realistic wave forcing from a global wave hindcast. The parameterizations mainly apply an enhancement to the turbulence velocity scale, and/or to the entrainment buoyancy flux in the surface boundary layer. An additional run is also performed with other wave effects to assess the relative importance of Langmuir turbulence, namely the Coriolis-Stokes forcing, Stokes tracer advection and wave-modified momentum fluxes. The default model (without wave effects) underestimates the mixed layer depth in summer and overestimates it at high latitudes in the winter. The results show that adding LT mixing reduces shallow mixed layer depth (MLD) biases, particularly in the subtropics all year-around, and in the Nordic Seas in summer. There is overall a stronger relative impact on the MLD during winter than during summer. In particular, the parameterization with the most vigorous LT effect causes winter MLD increases by more than 50% relative to a control run without Langmuir mixing. On the contrary, the parameterization which assumes LT effects on the entrainment buoyancy flux and accounts for the Stokes penetration depth is able to enhance the mixing in summer more than in winter. This parametrization is also distinct from the others because it restrains the LT mixing in regions of deep MLD biases, so it is the preferred choice for our purpose. The different parameterizations do not change the amplitude or phase of the seasonal cycle of heat content but do influence its long-term trend, which means that the LT can influence the drift of ocean models. The combined impact on water mass properties from the Coriolis-Stokes force, the Stokes drift tracer advection, and the wave-dependent momentum fluxes is negligible compared to the effect from the parameterized Langmuir turbulence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1001  
Permanent link to this record
 

 
Author Ali, M.; Singh, N.; Kumar, M.; Zheng, Y.; Bourassa, M.; Kishtawal, C.; Rao, C. url  doi
openurl 
  Title Dominant Modes of Upper Ocean Heat Content in the North Indian Ocean Type $loc['typeJournal Article']
  Year 2018 Publication Climate Abbreviated Journal Climate  
  Volume 6 Issue 3 Pages 71  
  Keywords ocean heat content; tropical cyclone heat potential; dominant modes; North Indian Ocean; SUMMER MONSOON; INTENSIFICATION; INTENSITY; PACIFIC  
  Abstract The thermal energy needed for the development of hurricanes and monsoons as well as any prolonged marine weather event comes from layers in the upper oceans, not just from the thin layer represented by sea surface temperature alone. Ocean layers have different modes of thermal energy variability because of the different time scales of ocean-atmosphere interaction. Although many previous studies have focused on the influence of upper ocean heat content (OHC) on tropical cyclones and monsoons, no study thus farparticularly in the North Indian Ocean (NIO)has specifically concluded the types of dominant modes in different layers of the ocean. In this study, we examined the dominant modes of variability of OHC of seven layers in the NIO during 1998-2014. We conclude that the thermal variability in the top 50 m of the ocean had statistically significant semiannual and annual modes of variability, while the deeper layers had the annual mode alone. Time series of OHC for the top four layers were analyzed separately for the NIO, Arabian Sea, and Bay of Bengal. For the surface to 50 m layer, the lowest and the highest values of OHC were present in January and May every year, respectively, which was mainly caused by the solar radiation cycle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2225-1154 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 986  
Permanent link to this record
 

 
Author Bentamy, A.; Piollé, J.F.; Grouazel, A.; Danielson, R.; Gulev, S.; Paul, F.; Azelmat, H.; Mathieu, P.P.; von Schuckmann, K.; Sathyendranath, S.; Evers-King, H.; Esau, I.; Johannessen, J.A.; Clayson, C.A.; Pinker, R.T.; Grodsky, S.A.; Bourassa, M.; Smith, S.R.; Haines, K.; Valdivieso, M.; Merchant, C.J.; Chapron, B.; Anderson, A.; Hollmann, R.; Josey, S.A. url  doi
openurl 
  Title Review and assessment of latent and sensible heat flux accuracy over the global oceans Type $loc['typeJournal Article']
  Year 2017 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 201 Issue Pages 196-218  
  Keywords Ocean Heat Flux; Latent heat flux; Sensible heat flux; Ocean heat content; Scatterometer; Surface wind; Specfic air humidity; OceanSites; Remotely sensed data  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 232  
Permanent link to this record
 

 
Author Bhowmick, S. A.; Agarwal, N.; Ali, M. M.; Kishtawal, C. M.; Sharma, R. url  doi
openurl 
  Title Role of ocean heat content in boosting post-monsoon tropical storms over Bay of Bengal during La-Nina events Type $loc['typeJournal Article']
  Year 2019 Publication Climate Dynamics Abbreviated Journal  
  Volume 52 Issue 12 Pages 7225-7234  
  Keywords La-Niña; Bay of Bengal; Tropical cyclones; Ocean heat content  
  Abstract This study aims to analyze the role of ocean heat content in boosting the post-monsoon cyclonic activities over Bay of Bengal during La-Niña events. In strong La-Niña years, accumulated cyclone energy in Bay of Bengal is much more as compared to any other year. It is observed that during late June to October of moderate to strong La-Nina years, western Pacific is warmer. Sea surface temperature anomaly of western Pacific Ocean clearly indicates the presence of relatively warmer water mass in the channel connecting the Indian Ocean and Pacific Ocean, situated above Australia. Ocean currents transport the heat zonally from Pacific to South eastern Indian Ocean. Excess heat of the southern Indian Ocean is eventually transported to eastern equatorial Indian Ocean through strong geostrophic component of ocean current. By September the northward transport of this excess heat from eastern equatorial Indian Ocean to Bay of Bengal takes place during La-Nina years boosting the cyclonic activities thereafter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 71  
Permanent link to this record
 

 
Author Bourassa, M.A., and P.J. Hughes url  doi
openurl 
  Title Surface Heat Fluxes and Wind Remote Sensing Type $loc['typeBook Chapter']
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 245-270  
  Keywords HEAT; OCEAN SURFACE; WINDS; SCATTEROMETERS; FLUXE; STRESS; RESPONSES  
  Abstract The exchange of heat and momentum through the air-sea surface are critical aspects of ocean forcing and ocean modeling. Over most of the global oceans, there are few in situ observations that can be used to estimate these fluxes. This chapter provides background on the calculation and application of air-sea fluxes, as well as the use of remote sensing to calculate these fluxes. Wind variability makes a large contribution to variability in surface fluxes, and the remote sensing of winds is relatively mature compared to the air sea differences in temperature and humidity, which are the other key variables. Therefore, the remote sensing of wind is presented in greater detail. These details enable the reader to understand how the improper use of satellite winds can result in regional and seasonal biases in fluxes, and how to calculate fluxes in a manner that removes these biases. Examples are given of high-resolution applications of fluxes, which are used to indicate the strengths and weakness of satellite-based calculations of ocean surface fluxes.  
  Address  
  Corporate Author Thesis  
  Publisher GODAE OceanView Place of Publication Tallahassee, FL Editor Chassignet, E. P., A. Pascual, J. Tintoré, and J. Verron  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 947  
Permanent link to this record
 

 
Author Cammarano, D.; Stefanova, L.; Ortiz, B.V.; Ramirez-Rodrigues, M.; Asseng, S.; Misra, V.; Wilkerson, G.; Basso, B.; Jones, J.W.; Boote, K.J.; DiNapoli, S. url  doi
openurl 
  Title Evaluating the fidelity of downscaled climate data on simulated wheat and maize production in the southeastern US Type $loc['typeJournal Article']
  Year 2013 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 13 Issue S1 Pages 101-110  
  Keywords Crop simulation models; Climate variability; Global circulation models; Reanalysis; Wheat; Maize  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 187  
Permanent link to this record
 

 
Author Chen, X.; Zhang, Y.; Zhang, M.; Feng, Y.; Wu, Z.; Qiao, F.; Huang, N.E. url  doi
openurl 
  Title Intercomparison between observed and simulated variability in global ocean heat content using empirical mode decomposition, part I: modulated annual cycle Type $loc['typeJournal Article']
  Year 2013 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 41 Issue 11-12 Pages 2797-2815  
  Keywords Ocean heat content; Modulated annual cycle; Empirical mode decomposition; Instantaneous frequency; Instantaneous amplitude; CMIP3  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 209  
Permanent link to this record
 

 
Author Farmer, B url  openurl
  Title Evaluation of Bulk Heat Fluxes from Atmospheric Datasets Type $loc['typeManuscript']
  Year 2012 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Comparison; Data Sets; Heat Flux; Linearization  
  Abstract  
  Address Department of Earth Ocean and Atmospheric Sciences  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 332  
Permanent link to this record
 

 
Author Griffies, S.M.; Yin, J.; Durack, P.J.; Goddard, P.; Bates, S.C.; Behrens, E.; Bentsen, M.; Bi, D.; Biastoch, A.; Böning, C.W.; Bozec, A.; Chassignet, E.; Danabasoglu, G.; Danilov, S.; Domingues, C.M.; Drange, H.; Farneti, R.; Fernandez, E.; Greatbatch, R.J.; Holland, D.M.; Ilicak, M.; Large, W.G.; Lorbacher, K.; Lu, J.; Marsland, S.J.; Mishra, A.; George Nurser, A.J.; Salas y Mélia, D.; Palter, J.B.; Samuels, B.L.; Schröter, J.; Schwarzkopf, F.U.; Sidorenko, D.; Treguier, A.M.; Tseng, Y.-heng; Tsujino, H.; Uotila, P.; Valcke, S.; Voldoire, A.; Wang, Q.; Winton, M.; Zhang, X. url  doi
openurl 
  Title An assessment of global and regional sea level for years 1993-2007 in a suite of interannual CORE-II simulations Type $loc['typeJournal Article']
  Year 2014 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 78 Issue Pages 35-89  
  Keywords Sea level; CORE global ocean-ice simulations; Steric sea level; Global sea level; Ocean heat content  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 128  
Permanent link to this record
 

 
Author Guimond, S url  openurl
  Title Tropical Cyclone Inner-Core Dynamics: A Latent Heat Retrieval and Its Effects on Intensity and Structure Change; and the Impacts of Effective Diffusion on the Axisymmetrization Process Type $loc['typeManuscript']
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Hurricanes, Doppler Radar, Latent Heat, Axisymmetrization, Diffusion, Numerical Modeling  
  Abstract Despite the fact that latent heating in cloud systems drives many atmospheric circulations, including tropical cyclones, little is known of its magnitude and structure due in large part to inadequate observations. In this work, a reasonably high-resolution (2 km), four-dimensional airborne Doppler radar retrieval of the latent heat of condensation is presented for rapidly intensifying Hurricane Guillermo (1997). Several advancements in the retrieval algorithm are shown including: (1) analyzing the scheme within the dynamically consistent framework of a numerical model, (2) identifying algorithm sensitivities through the use of ancillary data sources and (3) developing a precipitation budget storage term parameterization. The determination of the saturation state is shown to be an important part of the algorithm for updrafts of ~ 5 m s-1 or less. The uncertainties in the magnitude of the retrieved heating are dominated by errors in the vertical velocity. Using a combination of error propagation and Monte Carlo uncertainty techniques, biases were found to be small, and randomly distributed errors in the heating magnitude were ~16 % for updrafts greater than 5 m s-1 and ~156 % for updrafts of 1 m s- 1. The impact of the retrievals is assessed by inserting the heating into realistic numerical simulations at 2 km resolution and comparing the generated wind structure to the Doppler radar observations of Guillermo. Results show that using the latent heat retrievals outperforms a simulation that relies on a state-of-the-art microphysics scheme (Reisner and Jeffery 2009), in terms of wind speed root-mean-square errors, explained variance and eye/eyewall structure. The incorrect transport of water vapor (a function of the sub-grid model and the numerical approximations to advection) and the restrictions on the magnitude of heat release that ensure the present model's stability are suggested as sources of error in the simulation without the retrievals. Motivated by the latent heat retrievals, the dynamics of vortex axisymmetrization from the perspective of thermal anomalies is investigated using an idealized, non-linear atmospheric model (HIGRAD). Attempts at reproducing the results of previous work (Nolan and Grasso 2003; NG03) revealed a discrepancy with the impacts of purely asymmetric forcing. While NG03 found that purely asymmetric heating led to a negligible, largely negative impact on the vortex intensification, in the present study the impacts of asymmetries are found to have an important, largely positive role. Absolute angular momentum budgets revealed that the essential difference between the present work and that of NG03 was the existence of a significant, axisymmetric secondary circulation in the basic-state vortex used in the HIGRAD simulations. This secondary circulation was larger than that present in NG03's simulations. The spin-up of the vortex caused by the asymmetric thermal anomalies was dominated by the axisymmetric fluxes of angular momentum at all times, indicating fundamentally different evolution of asymmetries in the presence of radial flow. Radial momentum budgets were performed to elucidate the mechanisms responsible for the formation of the physically significant secondary circulation. Results show that explicit (sub-grid) diffusion in the model was producing a gradient wind imbalance, which drives a radial inflow and associated secondary circulation in an attempt to re-gain balance. In addition, the production of vorticity anomalies from the asymmetric heating was found to be sensitive to the eddy diffusivity, with large differences between HIGRAD and the widely used WRF model for the exact same value of this uncertain parameter.  
  Address Department of Earth, Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 573  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2020 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)