Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Nagamani, P.V.; Ali, M.M.; Goni, G.J.; Udaya Bhaskar, T.V.S.; McCreary, J.P.; Weller, R.A.; Rajeevan, M.; Gopala Krishna, V.V.; Pezzullo, J.C. url  doi
openurl 
  Title Heat content of the Arabian Sea Mini Warm Pool is increasing Type $loc['typeJournal Article']
  Year 2016 Publication Atmospheric Science Letters Abbreviated Journal Atmos. Sci. Lett.  
  Volume 17 Issue 1 Pages 39-42  
  Keywords tropical cyclone heat potential; Arabian Sea Mini Warm Pool; satellite altimetry; ocean heat content; all India monsoon rainfall  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530261X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 47  
Permanent link to this record
 

 
Author Smith, S.R.; Lopez, N.; Bourassa, M.A. url  doi
openurl 
  Title SAMOS air-sea fluxes: 2005-2014 Type $loc['typeJournal Article']
  Year 2016 Publication Geoscience Data Journal Abbreviated Journal Geosci. Data J.  
  Volume 3 Issue 1 Pages 9-19  
  Keywords air-sea flux; marine meteorology; marine climatology; heat flux; wind stress  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2049-6060 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 52  
Permanent link to this record
 

 
Author Shi, W. url  doi
openurl 
  Title Estimation of heat and salt storage variability in the Indian Ocean from TOPEX/Poseidon altimetry Type $loc['typeJournal Article']
  Year 2003 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.  
  Volume 108 Issue C7 Pages  
  Keywords heat storage; salt storage; altimetry; TOPEX/Poseidon; Indian Ocean; Indian Ocean dipole  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 844  
Permanent link to this record
 

 
Author Liu, Y.; Tan, Z.-M.; Wu, Z. url  doi
openurl 
  Title Noninstantaneous Wave-CISK for the Interaction between Convective Heating and Low-Level Moisture Convergence in the Tropics Type $loc['typeJournal Article']
  Year 2019 Publication Journal of the Atmospheric Sciences Abbreviated Journal J. Atmos. Sci.  
  Volume 76 Issue 7 Pages 2083-2101  
  Keywords Convection; Diabatic heating; Moisture; moisture budget  
  Abstract The interaction between tropical convective heating and thermally forced circulation is investigated using a global dry primitive-equation model with the parameterization of wave-conditional instability of the second kind (CISK). It is demonstrated that deep convective heating can hardly sustain itself through the moisture convergence at low levels regardless of the fraction of immediate consumption of converged moisture. In contrast, when the fraction is large, shallow convective heating and its forced circulation exhibit preferred growth of small scales. As the “CISK catastrophe” mainly comes from the instantaneous characters of moisture-convection feedback in the conventional wave-CISK, a noninstantaneous wave-CISK is proposed, which highlights the accumulation-consumption (AC) time scale for the convective heating accumulation and/or the converged moisture consumption. In the new wave-CISK, once moisture is converged, the release of latent heat takes place gradually within an AC time scale. In this sense, convective heating is not only related to the instantaneous moisture convergence at the current time, but also to that which occurred in the past period of the AC time scale. The noninstantaneous wave-CISK could guarantee the occurrence of convective heating and/or moisture convergence at larger scales, and then favor the growth of long waves, and thus solve the problem of CISK catastrophe. With the new wave-CISK and AC time scale of 2 days, the simulated convective heating-driven system bears a large similarity to that of the observed convectively coupled Kelvin wave.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4928 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1065  
Permanent link to this record
 

 
Author Zhang, M.; Wu, Z.; Qiao, F. url  doi
openurl 
  Title Deep Atlantic Ocean Warming Facilitated by the Deep Western Boundary Current and Equatorial Kelvin Waves Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Climate Abbreviated Journal J. Climate  
  Volume 31 Issue 20 Pages 8541-8555  
  Keywords Ocean; Atlantic Ocean; Heating; Kelvin waves; Ocean circulation; Oceanic variability; EMPIRICAL MODE DECOMPOSITION; NONSTATIONARY TIME-SERIES; NORTH-ATLANTIC; CLIMATE-CHANGE; HEAT-CONTENT; HIATUS; VARIABILITY; CIRCULATION; TEMPERATURE; PACIFIC  
  Abstract Increased heat storage in deep oceans has been proposed to account for the slowdown of global surface warming since the end of the twentieth century. How the imbalanced heat at the surface has been redistributed to deep oceans remains to be elucidated. Here, the evolution of deep Atlantic Ocean heat storage since 1950 on multidecadal or longer time scales is revealed. The anomalous heat in the deep Labrador Sea was transported southward by the shallower core of the deep western boundary current (DWBC). Upon reaching the equator around 1980, this heat transport route bifurcated into two, with one continuing southward along the DWBC and the other extending eastward along a narrow strip (about 4 degrees width) centered at the equator. In the 1990s and 2000s, meridional diffusion helped to spread warming in the tropics, making the eastward equatorial warming extension have a narrow head and wider tail. The deep Atlantic Ocean warming since 1950 had overlapping variability of approximately 60 years. The results suggest that the current basinwide Atlantic Ocean warming at depths of 1000-2000 m can be traced back to the subsurface warming in the Labrador Sea in the 1950s. An inference from these results is that the increased heat storage in the twenty-first century in the deep Atlantic Ocean is unlikely to partly account for the atmospheric radiative imbalance during the last two decades and to serve as an explanation for the current warming hiatus.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0894-8755 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 950  
Permanent link to this record
 

 
Author Steffen, J.; Bourassa, M. url  doi
openurl 
  Title Barrier Layer Development Local to Tropical Cyclones based on Argo Float Observations Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.  
  Volume 48 Issue 9 Pages 1951-1968  
  Keywords SEA-SURFACE TEMPERATURE; UPPER-OCEAN RESPONSE; NINO SOUTHERN-OSCILLATION; MIXED-LAYER; INDIAN-OCEAN; HEAT-BUDGET; NUMERICAL SIMULATIONS; HURRICANES; VARIABILITY; PACIFIC  
  Abstract The objective of this study is to quantify barrier layer development due to tropical cyclone (TC) passage using Argo float observations of temperature and salinity. To accomplish this objective, a climatology of Argo float measurements is developed from 2001 to 2014 for the Atlantic, eastern Pacific, and central Pacific basins. Each Argo float sample consists of a prestorm and poststorm temperature and salinity profile pair. In addition, a no-TC Argo pair dataset is derived for comparison to account for natural ocean state variability and instrument sensitivity. The Atlantic basin shows a statistically significant increase in barrier layer thickness (BLT) and barrier layer potential energy (BLPE) that is largely attributable to an increase of 2.6 m in the post-TC isothermal layer depth (ITLD). The eastern Pacific basin shows no significant changes to any barrier layer characteristic, likely due to a shallow and highly stratified pycnocline. However, the near-surface layer freshens in the upper 30 m after TC passage, which increases static stability. Finally, the central Pacific has a statistically significant freshening in the upper 20-30 m that increases upper-ocean stratification by similar to 35%. The mechanisms responsible for increases in BLPE vary between the Atlantic and both Pacific basins; the Atlantic is sensitive to ITLD deepening, while the Pacific basins show near-surface freshening to be more important in barrier layer development. In addition, Argo data subsets are used to investigate the physical relationships between the barrier layer and TC intensity, TC translation speed, radial distance from TC center, and time after TC passage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3670 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 970  
Permanent link to this record
 

 
Author Chen, X.; Zhang, Y.; Zhang, M.; Feng, Y.; Wu, Z.; Qiao, F.; Huang, N.E. url  doi
openurl 
  Title Intercomparison between observed and simulated variability in global ocean heat content using empirical mode decomposition, part I: modulated annual cycle Type $loc['typeJournal Article']
  Year 2013 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 41 Issue 11-12 Pages 2797-2815  
  Keywords Ocean heat content; Modulated annual cycle; Empirical mode decomposition; Instantaneous frequency; Instantaneous amplitude; CMIP3  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 209  
Permanent link to this record
 

 
Author Cammarano, D.; Stefanova, L.; Ortiz, B.V.; Ramirez-Rodrigues, M.; Asseng, S.; Misra, V.; Wilkerson, G.; Basso, B.; Jones, J.W.; Boote, K.J.; DiNapoli, S. url  doi
openurl 
  Title Evaluating the fidelity of downscaled climate data on simulated wheat and maize production in the southeastern US Type $loc['typeJournal Article']
  Year 2013 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 13 Issue S1 Pages 101-110  
  Keywords Crop simulation models; Climate variability; Global circulation models; Reanalysis; Wheat; Maize  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 187  
Permanent link to this record
 

 
Author Kara, A.B.; Rochford, P.A.; Hurlburt, H.E. url  doi
openurl 
  Title Air-Sea Flux Estimates And The 1997-1998 Enso Event Type $loc['typeJournal Article']
  Year 2002 Publication Boundary-Layer Meteorology Abbreviated Journal Boundary-Layer Meteorology  
  Volume 103 Issue 3 Pages 439-458  
  Keywords bulk formulae; El Nino; La Nina; latent and sensible heat flux; ocean mixed-layer depth; wind stress  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8314 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 495  
Permanent link to this record
 

 
Author Bentamy, A.; Piollé, J.F.; Grouazel, A.; Danielson, R.; Gulev, S.; Paul, F.; Azelmat, H.; Mathieu, P.P.; von Schuckmann, K.; Sathyendranath, S.; Evers-King, H.; Esau, I.; Johannessen, J.A.; Clayson, C.A.; Pinker, R.T.; Grodsky, S.A.; Bourassa, M.; Smith, S.R.; Haines, K.; Valdivieso, M.; Merchant, C.J.; Chapron, B.; Anderson, A.; Hollmann, R.; Josey, S.A. url  doi
openurl 
  Title Review and assessment of latent and sensible heat flux accuracy over the global oceans Type $loc['typeJournal Article']
  Year 2017 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 201 Issue Pages 196-218  
  Keywords Ocean Heat Flux; Latent heat flux; Sensible heat flux; Ocean heat content; Scatterometer; Surface wind; Specfic air humidity; OceanSites; Remotely sensed data  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 232  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)