Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mirhosseini, G.; Srivastava, P.; Stefanova, L. url  doi
openurl 
  Title The impact of climate change on rainfall Intensity-Duration-Frequency (IDF) curves in Alabama Type $loc['typeJournal Article']
  Year 2013 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 13 Issue S1 Pages 25-33  
  Keywords Climate change; Intensity–Duration–Frequency (IDF) curve; Temporal downscaling; General Circulation Models (GCMs)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 221  
Permanent link to this record
 

 
Author Misra, V.; Bhardwaj, A. url  doi
openurl 
  Title Defining the Northeast Monsoon of India Type $loc['typeJournal Article']
  Year 2019 Publication Monthly Weather Review Abbreviated Journal Mon. Wea. Rev.  
  Volume 147 Issue 3 Pages 791-807  
  Keywords Indian Summer Monsoon, intraseasonal,Climate models, variability, NEM, rainfall  
  Abstract This study introduces an objective definition for onset and demise of the Northeast Indian Monsoon (NEM). The definition is based on the land surface temperature analysis over the Indian subcontinent. It is diagnosed from the inflection points in the daily anomaly cumulative curve of the area-averaged surface temperature over the provinces of Andhra Pradesh, Rayalseema, and Tamil Nadu located in the southeastern part of India. Per this definition, the climatological onset and demise dates of the NEM season are 6 November and 13 March, respectively. The composite evolution of the seasonal cycle of 850hPa winds, surface wind stress, surface ocean currents, and upper ocean heat content suggest a seasonal shift around the time of the diagnosed onset and demise dates of the NEM season. The interannual variations indicate onset date variations have a larger impact than demise date variations on the seasonal length, seasonal anomalies of rainfall, and surface temperature of the NEM. Furthermore, it is shown that warm El Niño�Southern Oscillation (ENSO) episodes are associated with excess seasonal rainfall, warm seasonal land surface temperature anomalies, and reduced lengths of the NEM season. Likewise, cold ENSO episodes are likely to be related to seasonal deficit rainfall anomalies, cold land surface temperature anomalies, and increased lengths of the NEM season.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-0644 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 999  
Permanent link to this record
 

 
Author Misra, V.; Dirmeyer, P.A. url  doi
openurl 
  Title Air, Sea, and Land Interactions of the Continental U.S. Hydroclimate Type $loc['typeJournal Article']
  Year 2009 Publication Journal of Hydrometeorology Abbreviated Journal J. Hydrometeor  
  Volume 10 Issue 2 Pages 353-373  
  Keywords Atmosphere-land interaction; Hydrometeorology; Climatology; Air-sea interaction; Multidecadal variability; Coupled models  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1525-755X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 664  
Permanent link to this record
 

 
Author Misra, V.; Mishra, A.; Bhardwaj, A. url  doi
openurl 
  Title High-resolution regional-coupled ocean-atmosphere simulation of the Indian Summer Monsoon Type $loc['typeJournal Article']
  Year 2017 Publication International Journal of Climatology Abbreviated Journal Int. J. Climatol  
  Volume 37 Issue Pages 717-740  
  Keywords monsoon; regional model; ENSO  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0899-8418 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 15  
Permanent link to this record
 

 
Author Misra, V.; Mishra, A.; Bhardwaj, A. url  doi
openurl 
  Title Simulation of the Intraseasonal Variations of the Indian Summer Monsoon in a Regional Coupled Ocean-Atmosphere Model Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Climate Abbreviated Journal J. Climate  
  Volume 31 Issue 8 Pages 3167-3185  
  Keywords Asia; Indian Ocean; Mixed layer; Monsoons; Atmosphere-ocean interaction; Regional models  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0894-8755 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 557  
Permanent link to this record
 

 
Author Morey, S.L. url  doi
openurl 
  Title The spring transition from horizontal to vertical thermal stratification on a midlatitude continental shelf Type $loc['typeJournal Article']
  Year 2002 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.  
  Volume 107 Issue C8 Pages  
  Keywords continental shelf; stratification; Mixed Layer Dynamics; Coastal Ocean Modeling; West Florida Shelf  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 493  
Permanent link to this record
 

 
Author Morey, S.L.; Dukhovskoy, D.S. url  doi
openurl 
  Title A downscaling method for simulating deep current interactions with topography – Application to the Sigsbee Escarpment Type $loc['typeJournal Article']
  Year 2013 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 69 Issue Pages 50-63  
  Keywords Ocean modeling; Model nesting; Topographic flows; USA; Gulf of Mexico; Sigsbee Escarpment  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding DeepStar, HYCOM Consortium Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 183  
Permanent link to this record
 

 
Author Morey, S. L.; Zavala-Hidalgo, J.; O'Brien, J. J. url  doi
openurl 
  Title The seasonal variability of continental shelf circulation in the northern and western Gulf of Mexico from a high-resolution numerical model Type $loc['typeBook Chapter']
  Year 2005 Publication New Developments in the Circulation of the Gulf of Mexico Abbreviated Journal  
  Volume Issue Pages  
  Keywords Ocean circulation� Mexico, Gulf of� Remote sensing; Ocean circulation� Mexico, Gulf of� Mathematical models  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Sturges, W.; Lugo-Fernandez, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Geophys. Mongr. Ser. Abbreviated Series Title  
  Series Volume Series Issue 161 Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding ONR, NASA, MMS Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 852  
Permanent link to this record
 

 
Author Morey, S.L.; Bourassa, M.A.; Dukhovskoy, D.S.; O'Brien, J.J. url  doi
openurl 
  Title Modeling studies of the upper ocean response to a tropical cyclone Type $loc['typeJournal Article']
  Year 2006 Publication Ocean Dynamics Abbreviated Journal Ocean Dynamics  
  Volume 56 Issue 5-6 Pages 594-606  
  Keywords air-sea interaction; tropical cyclones; ocean modeling; air-sea fluxes  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-7341 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 432  
Permanent link to this record
 

 
Author Morrison, T.; Dukhovskoy, D. S.; McClean, J.; Gille, S. T.; Chassignet, E. url  openurl
  Title Causes of the anomalous heat flux onto the Greenland continental shelf Type $loc['typeAbstract']
  Year 2018 Publication American Geophysical Union Abbreviated Journal AGU  
  Volume Fall Meeting Issue Pages  
  Keywords 0726 Ice sheets, CRYOSPHEREDE: 4207 Arctic and Antarctic oceanography, OCEANOGRAPHY: GENERALDE: 4215 Climate and interannual variability, OCEANOGRAPHY: GENERALDE: 4255 Numerical modeling, OCEANOGRAPHY: GENERAL  
  Abstract On the continental shelf around Greenland, warm-salty Atlantic water at depth fills the deep narrow fjords where Greenland's tidewater glaciers terminate. Changes in the quantity or properties of this water mass starting in the mid 1990s is thought to be largely responsible for increased ocean-driven melting of the Greenland Ice Sheet. Using high-resolution (nominal 0.1-degree) ocean circulation models we cannot accurately resolve small-scale processes on the shelf or within fjords. However, we can assess changes in the flux of heat via Atlantic water onto the continental shelf. To understand the causes of the anomalous heat that has reached the shelf we examine heat content of subtropical gyre water and shifts in the North Atlantic and Atlantic Multidecadal Oscillations.

We compare changes in heat transport in two eddy permitting simulations: a global 0.1 degree (5-7km around Greenland) resolution coupled hindcast (1970-2009) simulation of the Parallel Ocean Program (POP) and a regional 0.08 degree (3-5km around Greenland) resolution coupled HYbrid Coordinate Ocean Model (HYCOM) hindcast (1993-2016) simulation. Both models are coupled to the Los Alamos National Laboratory Community Ice CodE version 4 and forced by atmospheric reanalysis fluxes. In both models we look for processes that could explain the increase in heat; processes that are present in both are likely to be robust causes of warming.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1009  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2021 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)