Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Le Sommer, Julien; Chassignet, E.P.; Wallcraft, A. J. url  openurl
  Title Ocean Circulation Modeling for Operational Oceanography: Current Status and Future Challenges Type $loc['typeBook Chapter']
  Year 2018 Publication New Frontiers in Operational Oceanography Abbreviated Journal  
  Volume Issue Pages 289-305  
  Keywords OCEAN MODELING; OCEAN CIRCULATION; PARAMETERIZATIONS  
  Abstract This chapter focuses on ocean circulation models used in operational oceanography, physical oceanography and climate science. Ocean circulation models area particular branch of ocean numerical modeling that focuses on the representation of ocean physical properties over spatial scales ranging from the global scale to less than a kilometer and time scales ranging from hours to decades. As such, they are an essential build-ing block for operational oceanography systems and their design receives a lot of attention from operational and research centers.  
  Address  
  Corporate Author Thesis  
  Publisher GODAE OceanView Place of Publication Tallahassee, FL Editor Chassignet, E. P., A. Pascual, J. Tintoré, and J. Verron  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 948  
Permanent link to this record
 

 
Author Armstrong, E. M.; Bourassa, M. A.; Cram, T.; Elya, J. L.; Greguska, F. R., III; Huang, T.; Jacob, J. C.; Ji, Z.; Jiang, Y.; Li, Y.; McGibbney, L. J.; Quach, N.; Smith, S. R.; Tsontos, V. M.; Wilson, B. D.; Worley, S. J.; Yang, C. P. url  openurl
  Title An information technology foundation for fostering interdisciplinary oceanographic research and analysis Type $loc['typeAbstract']
  Year 2018 Publication American Geophysical Union Abbreviated Journal AGU  
  Volume Fall Meeting Issue Pages  
  Keywords 1914 Data mining, INFORMATICSDE: 4805 Biogeochemical cycles, processes, and modeling, OCEANOGRAPHY: BIOLOGICAL AND CHEMICALDE: 4273 Physical and biogeochemical interactions, OCEANOGRAPHY: GENERALDE: 4504 Air/sea interactions, OCEANOGRAPHY: PHYSICAL  
  Abstract Before complex analysis of oceanographic or any earth science data can occur, it must be placed in the proper domain of computing and software resources. In the past this was nearly always the scientist's personal computer or institutional computer servers. The problem with this approach is that it is necessary to bring the data products directly to these compute resources leading to large data transfers and storage requirements especially for high volume satellite or model datasets. In this presentation we will present a new technological solution under development and implementation at the NASA Jet Propulsion Laboratory for conducting oceanographic and related research based on satellite data and other sources. Fundamentally, our approach for satellite resources is to tile (partition) the data inputs into cloud-optimized and computation friendly databases that allow distributed computing resources to perform on demand and server-side computation and data analytics. This technology, known as NEXUS, has already been implemented in several existing NASA data portals to support oceanographic, sea-level, and gravity data time series analysis with capabilities to output time-average maps, correlation maps, Hovmöller plots, climatological averages and more. A further extension of this technology will integrate ocean in situ observations, event-based data discovery (e.g., natural disasters), data quality screening and additional capabilities. This particular activity is an open source project known as the Apache Science Data Analytics Platform (SDAP) (https://sdap.apache.org), and colloquially as OceanWorks, and is funded by the NASA AIST program. It harmonizes data, tools and computational resources for the researcher allowing them to focus on research results and hypothesis testing, and not be concerned with security, data preparation and management. We will present a few oceanographic and interdisciplinary use cases demonstrating the capabilities for characterizing regional sea-level rise, sea surface temperature anomalies, and ocean hurricane responses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1004  
Permanent link to this record
 

 
Author Morrison, T.; Dukhovskoy, D. S.; McClean, J.; Gille, S. T.; Chassignet, E. url  openurl
  Title Causes of the anomalous heat flux onto the Greenland continental shelf Type $loc['typeAbstract']
  Year 2018 Publication American Geophysical Union Abbreviated Journal AGU  
  Volume Fall Meeting Issue Pages  
  Keywords 0726 Ice sheets, CRYOSPHEREDE: 4207 Arctic and Antarctic oceanography, OCEANOGRAPHY: GENERALDE: 4215 Climate and interannual variability, OCEANOGRAPHY: GENERALDE: 4255 Numerical modeling, OCEANOGRAPHY: GENERAL  
  Abstract On the continental shelf around Greenland, warm-salty Atlantic water at depth fills the deep narrow fjords where Greenland's tidewater glaciers terminate. Changes in the quantity or properties of this water mass starting in the mid 1990s is thought to be largely responsible for increased ocean-driven melting of the Greenland Ice Sheet. Using high-resolution (nominal 0.1-degree) ocean circulation models we cannot accurately resolve small-scale processes on the shelf or within fjords. However, we can assess changes in the flux of heat via Atlantic water onto the continental shelf. To understand the causes of the anomalous heat that has reached the shelf we examine heat content of subtropical gyre water and shifts in the North Atlantic and Atlantic Multidecadal Oscillations.

We compare changes in heat transport in two eddy permitting simulations: a global 0.1 degree (5-7km around Greenland) resolution coupled hindcast (1970-2009) simulation of the Parallel Ocean Program (POP) and a regional 0.08 degree (3-5km around Greenland) resolution coupled HYbrid Coordinate Ocean Model (HYCOM) hindcast (1993-2016) simulation. Both models are coupled to the Los Alamos National Laboratory Community Ice CodE version 4 and forced by atmospheric reanalysis fluxes. In both models we look for processes that could explain the increase in heat; processes that are present in both are likely to be robust causes of warming.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1009  
Permanent link to this record
 

 
Author Xue, W.; Xin, X.; Zhang, J.; Zhang, W.; Wu, H.; Huang, Z.; Zhang, T.; Li, H.; Ding, N.; Huang H. url  doi
openurl 
  Title Development and Testing of a Multi-model Ensemble Coupling Framework Type $loc['typeBook Chapter']
  Year 2016 Publication Development and Evaluation of High Resolution Climate System Models Abbreviated Journal  
  Volume Issue Pages 163-208  
  Keywords Climate system model; Ensemble coupling platform; Atmospheric noise; Process layout  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 91  
Permanent link to this record
 

 
Author Glazer, R. H.; Misra, V. url  doi
openurl 
  Title Ice versus liquid water saturation in simulations of the Indian summer monsoon Type $loc['typeJournal Article']
  Year 2018 Publication Climate Dynamics Abbreviated Journal  
  Volume Issue Pages  
  Keywords Indian monsoon; Regional modeling; Saturation vapor pressure; Cloud microphysics scheme  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 943  
Permanent link to this record
 

 
Author Kirtman, B. P.; Misra, V.; Burgman, R. J.; Infanti, J.; Obeysekera, J. url  doi
openurl 
  Title Florida Climate Variability and Prediction Type $loc['typeBook Chapter']
  Year 2017 Publication Florida's climate: Changes, variations, & impacts Abbreviated Journal  
  Volume Issue Pages 511-532  
  Keywords Multi-model ensembles; Regional climate prediction; Dynamical downscaling; Statistical downscaling  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Florida Climate Institute Place of Publication Gainesville, FL Editor Chassignet, E. P.; Jones, J. W.; Misra, V.; Obeysekera, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 850  
Permanent link to this record
 

 
Author Stukel, M.R.; Décima, M.; Landry, M.R.; Selph, K.E. url  doi
openurl 
  Title Nitrogen and isotope flows through the Costa Rica Dome upwelling ecosystem: The crucial mesozooplankton role in export flux Type $loc['typeJournal Article']
  Year 2018 Publication Global Biogeochemical Cycles Abbreviated Journal Global Biogeochemical Cycles  
  Volume 32 Issue 12 Pages 18151832.  
  Keywords Crustaceans; Diel vertical migration; Nitrogen cycle; Biological carbon pump; Nitrogen isotopes; Linear inverse ecosystem model  
  Abstract The Costa Rica Dome (CRD) is an open-ocean upwelling ecosystem, with high biomasses of picophytoplankton (especially Synechococcus), mesozooplankton, and higher trophic levels. To elucidate the food web pathways supporting the trophic structure and carbon export in this unique ecosystem, we used Markov Chain Monte Carlo techniques to assimilate data from four independent realizations of δ15N and planktonic rate measurements from the CRD into steady state, multicompartment ecosystem box models (linear inverse models). Model results present well-constrained snapshots of ecosystem nitrogen and stable isotope fluxes. New production is supported by upwelled nitrate, not nitrogen fixation. Protistivory (rather than herbivory) was the most important feeding mode for mesozooplankton, which rely heavily on microzooplankton prey. Mesozooplankton play a central role in vertical nitrogen export, primarily through active transport of nitrogen consumed in the surface layer and excreted at depth, which comprised an average 36-46% of total export. Detritus or aggregate feeding is also an important mode of resource acquisition by mesozooplankton and regeneration of nutrients within the euphotic zone. As a consequence, the ratio of passively sinking particle export to phytoplankton production is very low in the CRD. Comparisons to similar models constrained with data from the nearby equatorial Pacific demonstrate that the dominant role of vertical migrators to the biological pump is a unique feature of the CRD. However, both regions show efficient nitrogen transfer from mesozooplankton to higher trophic levels (as expected for regions with large fish, cetacean, and seabird populations) despite the dominance of protists as major grazers of phytoplankton.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 978  
Permanent link to this record
 

 
Author Morey, S. L.; Zavala-Hidalgo, J.; O'Brien, J. J. url  doi
openurl 
  Title The seasonal variability of continental shelf circulation in the northern and western Gulf of Mexico from a high-resolution numerical model Type $loc['typeBook Chapter']
  Year 2005 Publication New Developments in the Circulation of the Gulf of Mexico Abbreviated Journal  
  Volume Issue Pages  
  Keywords Ocean circulation� Mexico, Gulf of� Remote sensing; Ocean circulation� Mexico, Gulf of� Mathematical models  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Sturges, W.; Lugo-Fernandez, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Geophys. Mongr. Ser. Abbreviated Series Title  
  Series Volume Series Issue 161 Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding ONR, NASA, MMS Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 852  
Permanent link to this record
 

 
Author Zavala-Hidalgo, J; Pares-Sierra, A; Ochoa, J url  openurl
  Title Seasonal variability of the temperature and heat fluxes in the Gulf of Mexico Type $loc['typeJournal Article']
  Year 2002 Publication Atmosfera Abbreviated Journal  
  Volume 15 Issue 2 Pages 81-104  
  Keywords Gulf of Mexico; heat fluxes; numerical model; sea surface temperature; seasonal variability  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 498  
Permanent link to this record
 

 
Author Conlon, K.C.; Kintziger, K.W.; Jagger, M.; Stefanova, L.; Uejio, C.K.; Konrad, C. url  doi
openurl 
  Title Working with Climate Projections to Estimate Disease Burden: Perspectives from Public Health Type $loc['typeJournal Article']
  Year 2016 Publication International Journal of Environmental Research and Public Health Abbreviated Journal Int J Environ Res Public Health  
  Volume 13 Issue 8 Pages  
  Keywords *Climate Change/statistics & numerical data; Florida; Forecasting; Humans; Models, Theoretical; Public Health/*trends; United States; adaptation; attributable fraction; climate modeling; project disease burden; public health  
  Abstract There is interest among agencies and public health practitioners in the United States (USA) to estimate the future burden of climate-related health outcomes. Calculating disease burden projections can be especially daunting, given the complexities of climate modeling and the multiple pathways by which climate influences public health. Interdisciplinary coordination between public health practitioners and climate scientists is necessary for scientifically derived estimates. We describe a unique partnership of state and regional climate scientists and public health practitioners assembled by the Florida Building Resilience Against Climate Effects (BRACE) program. We provide a background on climate modeling and projections that has been developed specifically for public health practitioners, describe methodologies for combining climate and health data to project disease burden, and demonstrate three examples of this process used in Florida.  
  Address Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3220, USA. konrad@unc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1660-4601 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:27517942; PMCID:PMC4997490 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 73  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2021 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)