Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ali, A.; Christensen, K.H.; Breivik, Ø.; Malila, M.; Raj, R.P.; Bertino, L.; Chassignet, E.P.; Bakhoday-Paskyabi, M. url  doi
openurl 
  Title A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 137 Issue Pages 76-97  
  Keywords Langmuir mixing parameterization Mixed layer depth Sea surface temperature Ocean heat content Stokes penetration depth  
  Abstract Five different parameterizations of Langmuir turbulence (LT) effect are investigated in a realistic model of the North Atlantic and Arctic using realistic wave forcing from a global wave hindcast. The parameterizations mainly apply an enhancement to the turbulence velocity scale, and/or to the entrainment buoyancy flux in the surface boundary layer. An additional run is also performed with other wave effects to assess the relative importance of Langmuir turbulence, namely the Coriolis-Stokes forcing, Stokes tracer advection and wave-modified momentum fluxes. The default model (without wave effects) underestimates the mixed layer depth in summer and overestimates it at high latitudes in the winter. The results show that adding LT mixing reduces shallow mixed layer depth (MLD) biases, particularly in the subtropics all year-around, and in the Nordic Seas in summer. There is overall a stronger relative impact on the MLD during winter than during summer. In particular, the parameterization with the most vigorous LT effect causes winter MLD increases by more than 50% relative to a control run without Langmuir mixing. On the contrary, the parameterization which assumes LT effects on the entrainment buoyancy flux and accounts for the Stokes penetration depth is able to enhance the mixing in summer more than in winter. This parametrization is also distinct from the others because it restrains the LT mixing in regions of deep MLD biases, so it is the preferred choice for our purpose. The different parameterizations do not change the amplitude or phase of the seasonal cycle of heat content but do influence its long-term trend, which means that the LT can influence the drift of ocean models. The combined impact on water mass properties from the Coriolis-Stokes force, the Stokes drift tracer advection, and the wave-dependent momentum fluxes is negligible compared to the effect from the parameterized Langmuir turbulence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1001  
Permanent link to this record
 

 
Author Ali, M.; Singh, N.; Kumar, M.; Zheng, Y.; Bourassa, M.; Kishtawal, C.; Rao, C. url  doi
openurl 
  Title Dominant Modes of Upper Ocean Heat Content in the North Indian Ocean Type $loc['typeJournal Article']
  Year 2018 Publication Climate Abbreviated Journal Climate  
  Volume 6 Issue 3 Pages 71  
  Keywords ocean heat content; tropical cyclone heat potential; dominant modes; North Indian Ocean; SUMMER MONSOON; INTENSIFICATION; INTENSITY; PACIFIC  
  Abstract The thermal energy needed for the development of hurricanes and monsoons as well as any prolonged marine weather event comes from layers in the upper oceans, not just from the thin layer represented by sea surface temperature alone. Ocean layers have different modes of thermal energy variability because of the different time scales of ocean-atmosphere interaction. Although many previous studies have focused on the influence of upper ocean heat content (OHC) on tropical cyclones and monsoons, no study thus farparticularly in the North Indian Ocean (NIO)has specifically concluded the types of dominant modes in different layers of the ocean. In this study, we examined the dominant modes of variability of OHC of seven layers in the NIO during 1998-2014. We conclude that the thermal variability in the top 50 m of the ocean had statistically significant semiannual and annual modes of variability, while the deeper layers had the annual mode alone. Time series of OHC for the top four layers were analyzed separately for the NIO, Arabian Sea, and Bay of Bengal. For the surface to 50 m layer, the lowest and the highest values of OHC were present in January and May every year, respectively, which was mainly caused by the solar radiation cycle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2225-1154 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 986  
Permanent link to this record
 

 
Author Ali, M.M.; Nagamani, P.V.; Sharma, N.; Venu Gopal, R.T.; Rajeevan, M.; Goni, G.J.; Bourassa, M.A. url  doi
openurl 
  Title Relationship between ocean mean temperatures and Indian summer monsoon rainfall Type $loc['typeJournal Article']
  Year 2015 Publication Atmospheric Science Letters Abbreviated Journal Atmos. Sci. Lett.  
  Volume 16 Issue 3 Pages 408-413  
  Keywords ocean mean temperature; Indian summer monsoon rainfall; remote sensing; sea surface height anomaly  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530261X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 94  
Permanent link to this record
 

 
Author Ansong, J.K.; Arbic, B.K.; Simmons, H.L.; Alford, M.H.; Buijsman, M.C.; Timko, P.G.; Richman, J.G.; Shriver, J.F.; Wallcraft, A.J. url  doi
openurl 
  Title Geographical Distribution of Diurnal and Semidiurnal Parametric Subharmonic Instability in a Global Ocean Circulation Model Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.  
  Volume 48 Issue 6 Pages 1409-1431  
  Keywords Baroclinic flows; Internal waves; Nonlinear dynamics; Ocean dynamics; Baroclinic models; Ocean models  
  Abstract The evidence for, baroclinic energetics of, and geographic distribution of parametric subharmonic instability (PSI) arising from both diurnal and semidiurnal tides in a global ocean general circulation model is investigated using 1/12.5° and 1/25° simulations that are forced by both atmospheric analysis fields and the astronomical tidal potential. The paper examines whether PSI occurs in the model, and whether it accounts for a significant fraction of the tidal baroclinic energy loss. Using energy transfer calculations and bispectral analyses, evidence is found for PSI around the critical latitudes of the tides. The intensity of both diurnal and semidiurnal PSI in the simulations is greatest in the upper ocean, consistent with previous results from idealized simulations, and quickly drops off about 5° from the critical latitudes. The sign of energy transfer depends on location; the transfer is positive (from the tides to subharmonic waves) in some locations and negative in others. The net globally integrated energy transfer is positive in all simulations and is 0.5%�10% of the amount of energy required to close the baroclinic energy budget in the model. The net amount of energy transfer is about an order of magnitude larger in the 1/25° semidiurnal simulation than the 1/12.5° one, implying the dependence of the rate of energy transfer on model resolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3670 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 976  
Permanent link to this record
 

 
Author Arbic, B.K.; Shriver, J.F.; Hogan, P.J.; Hurlburt, H.E.; McClean, J.L.; Metzger, E.J.; Scott, R.B.; Sen, A.; Smedstad, O.M.; Wallcraft, A.J. url  doi
openurl 
  Title Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models Type $loc['typeJournal Article']
  Year 2009 Publication Journal of Geophysical Research Abbreviated Journal J. Geophys. Res.  
  Volume 114 Issue C2 Pages  
  Keywords energy budget; bottom drag; ocean models  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0148-0227 ISBN Medium  
  Area Expedition Conference  
  Funding Naval Research Laboratory Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 656  
Permanent link to this record
 

 
Author Arbic, B.K.; Wallcraft, A.J.; Metzger, E.J. url  doi
openurl 
  Title Concurrent simulation of the eddying general circulation and tides in a global ocean model Type $loc['typeJournal Article']
  Year 2010 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 32 Issue 3-4 Pages 175-187  
  Keywords Eddies; Internal tides; High-resolution ocean models  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 341  
Permanent link to this record
 

 
Author Armstrong, E. M.; Bourassa, M. A.; Cram, T.; Elya, J. L.; Greguska, F. R., III; Huang, T.; Jacob, J. C.; Ji, Z.; Jiang, Y.; Li, Y.; McGibbney, L. J.; Quach, N.; Smith, S. R.; Tsontos, V. M.; Wilson, B. D.; Worley, S. J.; Yang, C. P. url  openurl
  Title An information technology foundation for fostering interdisciplinary oceanographic research and analysis Type $loc['typeAbstract']
  Year 2018 Publication American Geophysical Union Abbreviated Journal AGU  
  Volume Fall Meeting Issue Pages  
  Keywords 1914 Data mining, INFORMATICSDE: 4805 Biogeochemical cycles, processes, and modeling, OCEANOGRAPHY: BIOLOGICAL AND CHEMICALDE: 4273 Physical and biogeochemical interactions, OCEANOGRAPHY: GENERALDE: 4504 Air/sea interactions, OCEANOGRAPHY: PHYSICAL  
  Abstract Before complex analysis of oceanographic or any earth science data can occur, it must be placed in the proper domain of computing and software resources. In the past this was nearly always the scientist's personal computer or institutional computer servers. The problem with this approach is that it is necessary to bring the data products directly to these compute resources leading to large data transfers and storage requirements especially for high volume satellite or model datasets. In this presentation we will present a new technological solution under development and implementation at the NASA Jet Propulsion Laboratory for conducting oceanographic and related research based on satellite data and other sources. Fundamentally, our approach for satellite resources is to tile (partition) the data inputs into cloud-optimized and computation friendly databases that allow distributed computing resources to perform on demand and server-side computation and data analytics. This technology, known as NEXUS, has already been implemented in several existing NASA data portals to support oceanographic, sea-level, and gravity data time series analysis with capabilities to output time-average maps, correlation maps, Hovmöller plots, climatological averages and more. A further extension of this technology will integrate ocean in situ observations, event-based data discovery (e.g., natural disasters), data quality screening and additional capabilities. This particular activity is an open source project known as the Apache Science Data Analytics Platform (SDAP) (https://sdap.apache.org), and colloquially as OceanWorks, and is funded by the NASA AIST program. It harmonizes data, tools and computational resources for the researcher allowing them to focus on research results and hypothesis testing, and not be concerned with security, data preparation and management. We will present a few oceanographic and interdisciplinary use cases demonstrating the capabilities for characterizing regional sea-level rise, sea surface temperature anomalies, and ocean hurricane responses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1004  
Permanent link to this record
 

 
Author Banks, R. url  openurl
  Title Variability of Indian Ocean Surface Fluxes Using a New Objective Method Type $loc['typeManuscript']
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Indian Ocean Dipole Mode, Indian Ocean, Objective Method, Surface Turbulent Fluxes, Monsoon, Gridded Product  
  Abstract A new objective technique is used to analyze monthly mean gridded fields of air and sea temperature, scalar and vector wind, specific humidity, sensible and latent heat flux, and wind stress over the Indian Ocean. A variational method produces a 1°x1° gridded product of surface turbulent fluxes and the variables needed to calculate these fluxes. The surface turbulent fluxes are forced to be physically consistent with the other variables. The variational method incorporates a state of the art flux model, which should reduce regional biases in heat and moisture fluxes. The time period is January 1982 to December 2003. The wind vectors are validated through comparison to monthly scatterometer winds. Empirical orthogonal function (EOF) analyses of the annual cycle emphasize significant modes of variability in the Indian Ocean. The dominant monsoon reversal and its connection with the southeast trades are linked in eigenmodes one and two of the surface fluxes. The third eigenmode of latent and sensible heat flux reveal a structure similar to the Indian Ocean Dipole (IOD) mode. The variability in surface fluxes associated with the monsoons and IOD are discussed. September-October-November composites of the surface fluxes during the 1997 positive IOD event and the 1983 negative IOD event are examined. The composites illustrate characteristics of fluxes during different IOD phases.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NASA, OSU, NOAA, NSF Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 621  
Permanent link to this record
 

 
Author Belyaev, K.P.; Tanajura, C.A.S.; O'Brien, J.J. url  doi
openurl 
  Title A data assimilation method used with an ocean circulation model and its application to the tropical Atlantic Type $loc['typeJournal Article']
  Year 2001 Publication Applied Mathematical Modelling Abbreviated Journal Applied Mathematical Modelling  
  Volume 25 Issue 8 Pages 655-670  
  Keywords Data assimilation Fokker–Planck equation NOAA/GFDL MOM_2 ocean circulation model PIRATA project  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0307904X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 819  
Permanent link to this record
 

 
Author Bentamy, A.; Piollé, J.F.; Grouazel, A.; Danielson, R.; Gulev, S.; Paul, F.; Azelmat, H.; Mathieu, P.P.; von Schuckmann, K.; Sathyendranath, S.; Evers-King, H.; Esau, I.; Johannessen, J.A.; Clayson, C.A.; Pinker, R.T.; Grodsky, S.A.; Bourassa, M.; Smith, S.R.; Haines, K.; Valdivieso, M.; Merchant, C.J.; Chapron, B.; Anderson, A.; Hollmann, R.; Josey, S.A. url  doi
openurl 
  Title Review and assessment of latent and sensible heat flux accuracy over the global oceans Type $loc['typeJournal Article']
  Year 2017 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 201 Issue Pages 196-218  
  Keywords Ocean Heat Flux; Latent heat flux; Sensible heat flux; Ocean heat content; Scatterometer; Surface wind; Specfic air humidity; OceanSites; Remotely sensed data  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 232  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)