Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bhardwaj, A.; Misra, V. url  doi
openurl 
  Title Monitoring the Indian Summer Monsoon Evolution at the Granularity of the Indian Meteorological Sub-divisions using Remotely Sensed Rainfall Products Type $loc['typeJournal Article']
  Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 11 Issue 9 Pages 1080  
  Keywords Indian Summer Monsoon; GPM; TRMM satellite precipitation; meteorological sub-divisions  
  Abstract We make use of satellite-based rainfall products from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) to objectively define local onset and demise of the Indian Summer Monsoon (ISM) at the spatial resolution of the meteorological subdivisions defined by the Indian Meteorological Department (IMD). These meteorological sub-divisions are the operational spatial scales for official forecasts issued by the IMD. Therefore, there is a direct practical utility to target these spatial scales for monitoring the evolution of the ISM. We find that the diagnosis of the climatological onset and demise dates and its variations from the TMPA product is quite similar to the rain gauge based analysis of the IMD, despite the differences in the duration of the two datasets. This study shows that the onset date variations of the ISM have a significant impact on the variations of the seasonal length and seasonal rainfall anomalies in many of the meteorological sub-divisions: for example, the early or later onset of the ISM is associated with longer and wetter or shorter and drier ISM seasons, respectively. It is shown that TMPA dataset (and therefore its follow up Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG)) could be usefully adopted for monitoring the onset of the ISM and therefore extend its use to anticipate the potential anomalies of the seasonal length and seasonal rainfall anomalies of the ISM in many of the Indian meteorological sub-divisions. View Full-Text  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1026  
Permanent link to this record
 

 
Author Cocke, S.; Boisserie, M.; Shin, D.-W. url  doi
openurl 
  Title A coupled soil moisture initialization scheme for the FSU/COAPS climate model Type $loc['typeJournal Article']
  Year 2013 Publication Inverse Problems in Science and Engineering Abbreviated Journal Inverse Problems in Science and Engineering  
  Volume 21 Issue 3 Pages 420-437  
  Keywords soil moisture initialization; data assimilation; precipitation assimilation; nudging; reanalysis  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1741-5977 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 199  
Permanent link to this record
 

 
Author Guimond, S. R. url  openurl
  Title A diagnostic study of the effects of trough interactions on tropical cyclone QPF. Type $loc['typeManuscript']
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Satellites, Precipitation, Tropical Cyclones, Troughs  
  Abstract A composite study is presented analyzing the influence of upper-tropospheric troughs on the evolution of precipitation in twelve Atlantic tropical cyclones (TCs) between the years 2000 � 2005. The TRMM Multi-Satellite Precipitation Analysis (TMPA) is used to examine the enhancement of precipitation within a 24 h window centered on trough interaction (TI) time in a shear-vector relative coordinate system. Eddy angular momentum flux convergence (EFC) computed from European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses is employed to objectively determine the initiation of a TI while adding insight, along with vertical wind shear, into the intensification of TC vortices. The relative roles of the dynamics (EFC and vertical wind shear) and thermodynamics (moist static energy potential) in TIs are outlined in the context of precipitation enhancement that provides quantitative insight into the “good trough”/“bad trough” paradigm. The largest precipitation rates and enhancements are found in the down-shear left quadrant of the storm, consistent with previous studies of convective asymmetries. Maximum mean enhancement values of 1.4 mm/h are found at the 200 km radius in the down-shear left quadrant. Results indicate that the largest precipitation enhancements occur with “medium” TIs; comprised of EFC values between 17 � 22 (m/s)/day and vertical wind shear Sensitivity tests on the upper vertical wind shear boundary reveal the importance of using the tropopause for wind shear computations when a TC enters mid-latitude regions. Changes in radial mean precipitation ranging from 29 � 40 % across all storm quadrants are found when using the tropopause as the upper boundary on the shear vector. Tests on the lower boundary using QuikSCAT ocean surface wind vectors expose large sensitivities on the precipitation ranging from 42 � 60 % indicating that the standard level of 850 hPa, outside of the boundary layer in most storms, is more physically reliable for computing vertical wind shear. These results should help to improve TC quantitative precipitation forecasting (QPF) as operational forecasters routinely rely on crude statistical methods and rules of thumb for forecasting TC precipitation.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NASA, OVWST Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 610  
Permanent link to this record
 

 
Author Kim, D.; Lee, S.-K.; Lopez, H.; Foltz, G.R.; Misra, V.; Kumar, A. url  doi
openurl 
  Title On the Role of Pacific-Atlantic SST Contrast and Associated Caribbean Sea Convection in August-October U.S. Regional Rainfall Variability Type $loc['typeJournal Article']
  Year 2020 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.  
  Volume 47 Issue 11 Pages  
  Keywords Pacific‐ Atlantic SST interaction; Atlantic Warm pool; Caribbean Sea; U.S. precipitation  
  Abstract This study investigates the large‐scale atmospheric processes that lead to U.S. precipitation variability in late summer to midfall (August–October; ASO) and shows that the well‐recognized relationship between North Atlantic Subtropical High and U.S. precipitation in peak summer (June–August) significantly weakens in ASO. The working hypothesis derived from our analysis is that in ASO convective activity in the Caribbean Sea, modulated by the tropical Pacific‐Atlantic sea surface temperature (SST) anomaly contrast, directly influences the North American Low‐Level Jet and thus U.S. precipitation east of the Rockies, through a Gill‐type response. This hypothesis derived from observations is strongly supported by a long‐term climate model simulation and by a linear baroclinic atmospheric model with prescribed diabatic forcings in the Caribbean Sea. This study integrates key findings from previous studies and advances a consistent physical rationale that links the Pacific‐Atlantic SST anomaly contrast, Caribbean Sea convective activity, and U.S. rainfall in ASO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-8276 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1110  
Permanent link to this record
 

 
Author Lim, Y.-K.; Kim, K.-Y. url  doi
openurl 
  Title A New Perspective on the Climate Prediction of Asian Summer Monsoon Precipitation Type $loc['typeJournal Article']
  Year 2006 Publication Journal of Climate Abbreviated Journal J. Climate  
  Volume 19 Issue 19 Pages 4840-4853  
  Keywords Monsoons; Asia; Intraseasonal variability; Precipitation  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0894-8755 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 708  
Permanent link to this record
 

 
Author Lim, Y.-K.; Cocke, S.; Shin, D.W.; Schoof, J.T.; LaRow, T.E.; O'Brien, J.J. url  doi
openurl 
  Title Downscaling large-scale NCEP CFS to resolve fine-scale seasonal precipitation and extremes for the crop growing seasons over the southeastern United States Type $loc['typeJournal Article']
  Year 2010 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 35 Issue 2-3 Pages 449-471  
  Keywords Downscaling; Precipitation; Regional climate; Prediction; Extremes  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 364  
Permanent link to this record
 

 
Author Parfitt, R.; Ummenhofer, C.C.; Buckley, B.M.; Hansen, K.G.; D'Arrigo, R.D. url  doi
openurl 
  Title Distinct seasonal climate drivers revealed in a network of tree-ring records from Labrador, Canada Type $loc['typeJournal Article']
  Year 2020 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 54 Issue 3-4 Pages 1897-1911  
  Keywords BLUE INTENSITY; LATEWOOD DENSITY; TEMPERATURE; DENDROCLIMATOLOGY; PRECIPITATION; STANDARDIZATION; VARIABILITY; NUNATSIAVUT; TRENDS; GULF  
  Abstract Traditionally, high-latitude dendroclimatic studies have focused on measurements of total ring width (RW), with the maximum density of the latewood (MXD) serving as a complementary variable. Whilst MXD has typically improved the strength of the growing season climate connection over that of RW, its measurements are costly and time-consuming. Recently, a less costly and more time-efficient technique to extract density measurements has emerged, based on lignin's propensity to absorb blue light. This Blue Intensity (BI) methodology is based on image analyses of finely-sanded core samples, and the relative ease with which density measurements can be extracted allows for significant increases in spatio-temporal sample depth. While some studies have attempted to combine RW and MXD as predictors for summer temperature reconstructions, here we evaluate a systematic comparison of the climate signal for RW and latewood BI (LWBI) separately, using a recently updated and expanded tree ring database for Labrador, Canada. We demonstrate that while RW responds primarily to climatic drivers earlier in the growing season (January-April), LWBI is more responsive to climate conditions during late spring and summer (May-August). Furthermore, RW appears to be driven primarily by large-scale atmospheric dynamics associated with the Pacific North American pattern, whilst LWBI is more closely associated with local climate conditions, themselves linked to the behaviour of the Atlantic Multidecadal Oscillation. Lastly, we demonstrate that anomalously wide or narrow growth rings consistently respond to the same climate drivers as average growth years, whereas the sensitivity of LWBI to extreme climate conditions appears to be enhanced.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1119  
Permanent link to this record
 

 
Author Petraitis, D. C. url  openurl
  Title Long-Term ENSO-Related Winter Rainfall Predictions over the Southeast U.S. Using the FSU Global Spectral Model Type $loc['typeManuscript']
  Year 2006 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Correlation, Model, Precipitation, ENSO, Skill Score  
  Abstract Rainfall patterns over the Southeast U.S. have been found to be connected to the El Niño-Southern Oscillation (ENSO). Warm ENSO events cause positive precipitation anomalies and cold ENSO events cause negative precipitation anomalies. With this level of connection, models can be used to test the predictability of ENSO events. Using the Florida State University Global Spectral Model (FSUGSM), model data over a 50-year period will be evaluated for its similarity to observations. The FSUGSM is a global spectral model with a T63 horizontal resolution (approximately 1.875°) and 17 unevenly spaced vertical levels. Details of this model can be found in Cocke and LaRow (2000). The experiment utilizes two runs using the Naval Research Laboratory (NRL) RAS convection scheme and two runs using the National Centers for Environmental Prediction (NCEP) SAS convection scheme to comprise the ensemble. The simulation was done for 50 years, from 1950 to 1999. Reynolds and Smith monthly mean sea surface temperatures (SSTs) from 1950-1999 provide the lower boundary condition. Atmospheric and land conditions from January 1, 1987 and January 1, 1995 were used as the initial starting conditions. The observational precipitation data being used as the basis for comparison is a gridded global dataset from Willmott and Matsuura (2005). Phase precipitation differences show higher precipitation amounts for El Niño than La Niña in all model runs. Temporal correlations between model runs and the observations show southern and eastern areas with the highest correlation values during an ENSO event. Skill scores validate the findings of the model/observation correlations, with southern and eastern areas showing scores close to zero. Temporal correlations between tropical Pacific SSTs and Southeast precipitation further confirm the model's ability to predict ENSO precipitation patterns over the Southeast U.S. The inconsistency in the SST/precipitation correlations between the models can be attributed to differences in the 200-mb jet stream and 500-mb height anomalies. Slight differences in position and strength for both variables affect the teleconnection between tropical Pacific SSTs and Southeast.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 618  
Permanent link to this record
 

 
Author Selman, C.; Misra, V. url  doi
openurl 
  Title Simulating diurnal variations over the southeastern United States Type $loc['typeJournal Article']
  Year 2015 Publication Journal of Geophysical Research: Atmospheres Abbreviated Journal J. Geophys. Res. Atmos.  
  Volume 120 Issue 1 Pages 180-198  
  Keywords diurnal variations; southeast; precipitation; temperature; downscaling; regional climate modeling  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169897X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 120  
Permanent link to this record
 

 
Author Selman, C.; Misra, V.; Stefanova, L.; Dinapoli, S.; Smith III, T.J. url  doi
openurl 
  Title On the twenty-first-century wet season projections over the Southeastern United States Type $loc['typeJournal Article']
  Year 2013 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 13 Issue S1 Pages 153-164  
  Keywords Regional climate change; Southeast United States; Rainfall variability; Regional climate model; Global climate model; Precipitation variability  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 192  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2021 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)