Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Zeng, H.; Chambers, J.Q.; Negron-Juarez, R.I.; Hurtt, G.C.; Baker, D.B.; Powell, M.D. url  doi
openurl 
  Title Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to 2000 Type $loc['typeJournal Article']
  Year 2009 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A  
  Volume 106 Issue 19 Pages 7888-7892  
  Keywords Biodiversity; Biomass; Carbon; *Cyclonic Storms; Ecosystem; Greenhouse Effect; Models, Statistical; Southeastern United States; *Trees; United States  
  Abstract Tropical cyclones cause extensive tree mortality and damage to forested ecosystems. A number of patterns in tropical cyclone frequency and intensity have been identified. There exist, however, few studies on the dynamic impacts of historical tropical cyclones at a continental scale. Here, we synthesized field measurements, satellite image analyses, and empirical models to evaluate forest and carbon cycle impacts for historical tropical cyclones from 1851 to 2000 over the continental U.S. Results demonstrated an average of 97 million trees affected each year over the entire United States, with a 53-Tg annual biomass loss, and an average carbon release of 25 Tg y(-1). Over the period 1980-1990, released CO(2) potentially offset the carbon sink in forest trees by 9-18% over the entire United States. U.S. forests also experienced twice the impact before 1900 than after 1900 because of more active tropical cyclones and a larger extent of forested areas. Forest impacts were primarily located in Gulf Coast areas, particularly southern Texas and Louisiana and south Florida, while significant impacts also occurred in eastern North Carolina. Results serve as an important baseline for evaluating how potential future changes in hurricane frequency and intensity will impact forest tree mortality and carbon balance.  
  Address Department of Ecology and Evolutionary Biology, Tulane University, 400 Boggs Center, New Orleans, LA 70118, USA. hzeng@tulane.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:19416842; PMCID:PMC2683102 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 658  
Permanent link to this record
 

 
Author Ford, K. M. url  openurl
  Title Uncertainty in Scatterometer-Derived Vorticity Type $loc['typeManuscript']
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Vorticity, Scatterometer, Cyclone Genesis, Rrror Analysis, Tropical Storm  
  Abstract A more versatile and robust technique is developed for determining area averaged surface vorticity based on vector winds from the SeaWinds scatterometer on the QuikSCAT satellite. This improved technique is discussed in detail and compared to two previous studies by Sharp et al. (2002) and Gierach et al. (2007) that focused on early development of tropical systems. The error characteristics of the technique are examined in detail. Specifically, three independent sources of error are explored: random observational error, truncation error and representation error. Observational errors are due to random errors in the wind observations, and determined as a worst-case estimate as a function of averaging spatial scale. The observational uncertainty in vorticity averaged for a roughly circular shape with a 100 km diameter, expressed as one standard deviation, is approximately 0.5 x 10 -5 s-1 for the methodology described herein. Truncation error is associated with the assumption of linear changes between wind vectors. For accurate results, it must be estimated on a case-by-case basis. An attempt is made to determine a lower bound of truncation errors through the use of composites of tropical disturbances. This lower bound is calculated as 10-7 s-1 for the composites, which is relatively small compared to the tropical disturbance detection threshold set at 5 x 10-5 s-1, used in an earlier study. However, in more realistic conditions, uncertainty related to truncation errors is much larger than observational uncertainty. The third type of error discussed is due to the size of the area being averaged. If the wind vectors associated with a vorticity maximum are inside the perimeter of this area (away from the edges), it will be missed. This type of error is analogous to over-smoothing. Tropical and sub-tropical low pressure systems from three months of QuikSCAT observations are used to examine this error. This error results in a bias of approximately 1.5 x 10-5 s-1 for area averaged vorticity calculated on a 100 km scale compared to vorticity calculated on a 25 km scale. The discussion of these errors will benefit future projects of this nature as well as future satellite missions.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 608  
Permanent link to this record
 

 
Author Dukhovskoy, D.S.; Morey, S.L. url  doi
openurl 
  Title Simulation of the Hurricane Dennis storm surge and considerations for vertical resolution Type $loc['typeJournal Article']
  Year 2011 Publication Natural Hazards Abbreviated Journal Nat Hazards  
  Volume 58 Issue 1 Pages 511-540  
  Keywords Storm surge modeling; Unstructured grid; Vertical discretization; Coastal inundation  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-030X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 303  
Permanent link to this record
 

 
Author Shropshire, T.; Li, Y.; He, R. url  doi
openurl 
  Title Storm impact on sea surface temperature and chlorophyll a in the Gulf of Mexico and Sargasso Sea based on daily cloud-free satellite data reconstructions Type $loc['typeJournal Article']
  Year 2016 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.  
  Volume 43 Issue 23 Pages 12,199-12,207  
  Keywords storm; sea surface temperature; surface chl a; northwest Atlantic ocean  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-8276 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 51  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)