Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jeon, C.-H.; Buijsman, M.C.; Wallcraft, A.J.; Shriver, J.F.; Arbic, B.K.; Richman, J.G.; Hogan, P.J. url  doi
openurl 
  Title Improving surface tidal accuracy through two-way nesting in a global ocean model Type $loc['typeJournal Article']
  Year Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1035  
Permanent link to this record
 

 
Author Jeon, C.-H.; Buijsman, M.C.; Wallcraft, A.J.; Shriver, J.F.; Arbic, B.K.; Richman, J.G.; Hogan, P.J. url  doi
openurl 
  Title Improving surface tidal accuracy through two-way nesting in a global ocean model Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 137 Issue Pages 98-113  
  Keywords Two-way nesting; HYCOM; Barotropic tides; OASIS3-MCT; FES2014; TPXO9-atlas  
  Abstract In global ocean simulations, forward (non-data-assimilative) tide models generally feature large sea-surface-height errors near Hudson Strait in the North Atlantic Ocean with respect to altimetry-constrained tidal solutions. These errors may be associated with tidal resonances that are not well resolved by the complex coastal-shelf bathymetry in low-resolution simulations. An online two-way nesting framework has been implemented to improve global surface tides in the HYbrid Coordinate Ocean Model (HYCOM). In this framework, a high-resolution child domain, covering Hudson Strait, is coupled with a relatively low-resolution parent domain for computational efficiency. Data such as barotropic pressure and velocity are exchanged between the child and parent domains with the external coupler OASIS3-MCT. The developed nesting framework is validated with semi-idealized basin-scale model simulations. The M2 sea-surface heights show very good accuracy in the one-way and two-way nesting simulations in Hudson Strait, where large tidal elevations are observed. In addition, the mass and tidal energy flux are not adversely impacted at the nesting boundaries in the semi-idealized simulations. In a next step, the nesting framework is applied to a realistic global tide simulation. In this simulation, the resolution of the child domain (1/75°) is three times as fine as that of the parent domain (1/25°). The M2 sea-surface-height root-mean-square errors with tide gauge data and the altimetry-constrained global FES2014 and TPXO9-atlas tidal solutions are evaluated for the nesting and no-nesting solutions. The better resolved coastal bathymetry and the finer grid in the child domain improve the local tides in Hudson Strait and Bay, and the back-effect of the coastal tides induces an improvement of the barotropic tides in the open ocean of the Atlantic.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1034  
Permanent link to this record
 

 
Author Jeon, C.-H.; Buijsman, M.C.; Wallcraft, A.J.; Shriver, J.F.; Arbic, B.K.; Richman, J.G.; Hogan, P.J. url  openurl
  Title Improving surface tidal accuracy through two-way nesting in a global ocean model Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 137 Issue Pages 98-113  
  Keywords Two-way nesting; HYCOM; Barotropic tides; OASIS3-MCT; FES2014; TPXO9-atlas  
  Abstract In global ocean simulations, forward (non-data-assimilative) tide models generally feature large sea-surface-height errors near Hudson Strait in the North Atlantic Ocean with respect to altimetry-constrained tidal solutions. These errors may be associated with tidal resonances that are not well resolved by the complex coastal-shelf bathymetry in low-resolution simulations. An online two-way nesting framework has been implemented to improve global surface tides in the HYbrid Coordinate Ocean Model (HYCOM). In this framework, a high-resolution child domain, covering Hudson Strait, is coupled with a relatively low-resolution parent domain for computational efficiency. Data such as barotropic pressure and velocity are exchanged between the child and parent domains with the external coupler OASIS3-MCT. The developed nesting framework is validated with semi-idealized basin-scale model simulations. The M2 sea-surface heights show very good accuracy in the one-way and two-way nesting simulations in Hudson Strait, where large tidal elevations are observed. In addition, the mass and tidal energy flux are not adversely impacted at the nesting boundaries in the semi-idealized simulations. In a next step, the nesting framework is applied to a realistic global tide simulation. In this simulation, the resolution of the child domain (1/75°) is three times as fine as that of the parent domain (1/25°). The M2 sea-surface-height root-mean-square errors with tide gauge data and the altimetry-constrained global FES2014 and TPXO9-atlas tidal solutions are evaluated for the nesting and no-nesting solutions. The better resolved coastal bathymetry and the finer grid in the child domain improve the local tides in Hudson Strait and Bay, and the back-effect of the coastal tides induces an improvement of the barotropic tides in the open ocean of the Atlantic.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1036  
Permanent link to this record
 

 
Author Karmakar, N.; Misra, V. url  doi
openurl 
  Title Differences in Northward Propagation of Convection Over the Arabian Sea and Bay of Bengal During Boreal Summer Type $loc['typeJournal Article']
  Year 2019 Publication Journal of Geophysical Research: Atmospheres Abbreviated Journal J. Geophys. Res. Atmos.  
  Volume 125 Issue 3 Pages  
  Keywords  
  Abstract The governing dynamics that modulate the propagation characteristics of intraseasonal oscillations (ISO) during summer monsoon over the two ocean basins, Bay of Bengal (BoB) and Arabian Sea (AS), are investigated using observational analysis and high‐resolution regional coupled ocean‐atmosphere climate model simulations. ISO features are extracted over the Indian region using a data‐adaptive spectral method called multichannel singular spectrum analysis. ISO exhibits stronger intensity over the BoB than over the AS. But ISO‐filtered rainfall propagates at a faster rate ( urn:x-wiley:jgrd:media:jgrd55983:jgrd55983-math-00011.25°/day) over AS as compared to BoB ( urn:x-wiley:jgrd:media:jgrd55983:jgrd55983-math-0002.74°/day), giving rise to a northwest‐southeast tilted band of rainfall anomalies. However, the composite diagrams of several atmospheric fields associated with northward propagation like vorticity, low‐level convergence, and oceanic variables like sea surface temperature and mixed layer depth do not show this difference in propagation speed and all exhibit a speed of nearly 0.75°/day in both the ocean basins. The difference in speed of ISO‐filtered rainfall is explained through moisture flux convergence. Anomalous horizontal moisture advection plays a major role over AS in preconditioning the atmosphere and making it favorable for convection. Anomalous wind acting on climatological moisture gradient is the dominant term in the moisture advection equation. Easterly wind anomalies associated with a low‐level anticyclone over India helps advect moisture from the eastern side of the domain. The northwest‐southeast tilt of ISO is dictated by the atmospheric processes of moisture advection with the upper ocean playing a more passive role in causing the tilt.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-897X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1099  
Permanent link to this record
 

 
Author Karmakar, N.; Misra, V. url  doi
openurl 
  Title The Relation of Intraseasonal Variations With Local Onset and Demise of the Indian Summer Monsoon Type $loc['typeJournal Article']
  Year 2019 Publication Journal of Geophysical Research: Atmospheres Abbreviated Journal J. Geophys. Res. Atmos.  
  Volume 124 Issue 5 Pages 2483-2506  
  Keywords hydroclimatic, Indian Summer Monsoon, Intraseasonal Oscillations, eastern Indiawestward propagating  
  Abstract Two of the most important hydroclimatic features of the Indian Summer Monsoon (ISM) rainfall are its onset/demise and Intraseasonal Oscillations (ISOs) manifested by the active‐break cycles. In this study, we aim to understand the quantitative association between these two phenomena. An objective definition of local onset/demise of the ISM based on more than a century‐long India Meteorological Department (IMD) rain‐gauge observation is taken into consideration. Using multichannel singular spectrum analysis (MSSA) we isolate northward propagating low‐ (20–60 days; LF‐ISO) and northwestward propagating high‐ (10–20 days; HF‐ISO) frequency ISOs from the daily ISM rainfall. Our results suggest that a large number of local onset (59%) and demise (62%) events occur during positive developing phases and positive decaying phases of two ISOs, respectively, with phase‐locking between LF‐ISO and HF‐ISO being particularly important. Local onset is largely associated with favorable phases of ISOs across India except for LF‐ISO over eastern India and HF‐ISO over western Ghats and central India (CI). We find that local demise is more coherent with the ISO phases, especially with HF‐ISO across the domain. We performed a case study to understand large‐scale association with the onset of the ISM over CI. In 44 of total 58 cases (1948–2005), when CI onset occurred during favorable LF‐ISO or HF‐ISO phase, they are either linked with a northward propagation of convection from the equator in LF‐ISO timescale (28 cases) or westward propagating structures from the western Pacific in HF‐ISO timescale (27 cases).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-897X ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1014  
Permanent link to this record
 

 
Author Kelly, T. B. openurl 
  Title Spatial and interannual variability in export efficiency and the biological pump in an eastern boundary current upwelling system with substantial lateral advection Type $loc['typeManuscript']
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Department of Earth Ocean and Atmospheric Science  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 944  
Permanent link to this record
 

 
Author Kelly, T.B.; Davison, P.C.; Goericke, R.; Landry, M.R.; Ohman, M.D.; Stukel, M,R. doi  openurl
  Title The Importance of Mesozooplankton Diel Vertical Migration for Sustaining a Mesopelagic Food Web Type $loc['typeJournal Article']
  Year 2019 Publication FRONTIERS IN MARINE SCIENCE Abbreviated Journal  
  Volume 6 Issue Pages  
  Keywords  
  Abstract We used extensive ecological and biogeochemical measurements obtained from quasi-Lagrangian experiments during two California Current Ecosystem Long-Term Ecosystem Research cruises to analyze carbon fluxes between the epipelagic and mesopelagic zones using a linear inverse ecosystem model (LIEM). Measurement constraints on the model include C-14 primary productivity, dilution-based microzooplankton grazing rates, gut pigment-based mesozooplankton grazing rates (on multiple zooplankton size classes), Th-234:U-238 disequilibrium and sediment trap measured carbon export, and metabolic requirements of micronekton, zooplankton, and bacteria. A likelihood approach (Markov Chain Monte Carlo) was used to estimate the resulting flow uncertainties from a sample of potential flux networks. Results highlight the importance of mesozooplankton active transport (i.e., diel vertical migration) in supplying the carbon demand of mesopelagic organisms and sequestering carbon dioxide from the atmosphere. In nine water parcels ranging from a coastal bloom to offshore oligotrophic conditions, mesozooplankton active transport accounted for 18-84% (median: 42%) of the total carbon transfer to the mesopelagic, with gravitational settling of POC (12-55%; median: 37%), and subduction (2-32%; median: 14%) providing the majority of the remainder. Vertically migrating zooplankton contributed to downward carbon flux through respiration and excretion at depth and via mortality losses to predatory zooplankton and mesopelagic fish (e.g., myctophids and gonostomatids). Sensitivity analyses showed that the results of the LIEM were robust to changes in nekton metabolic demand, rates of bacterial production, and mesozooplankton gross growth efficiency. This analysis suggests that prior estimates of zooplankton active transport based on conservative estimates of standard (rather than active) metabolism are likely too low.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1084  
Permanent link to this record
 

 
Author Kelly, T.B.; Goericke, R.; Kahru, M.; Song, H.; Stukel, M.R. url  doi
openurl 
  Title CCE II: Spatial and interannual variability in export efficiency and the biological pump in an eastern boundary current upwelling system with substantial lateral advection Type $loc['typeJournal Article']
  Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers  
  Volume 140 Issue Pages 14-25  
  Keywords CALIFORNIA CURRENT ECOSYSTEM; OCEAN CARBON-CYCLE; COASTAL WATERS; FRONTAL ZONE; TIME-SERIES; FLUX; SINKING; SEA; PACIFIC; ZOOPLANKTON  
  Abstract Estimating interannual variability in carbon export is a key goal of many marine biogeochemical studies. However, due to variations in export mechanisms between regions, generalized models used to estimate global patterns in export often fail when used for intra-regional analysis. We present here a region-specific model of export production for the California Current Ecosystem (CCE) parameterized using intensive Lagrangian process studies conducted during El Niño-Southern Oscillation (ENSO) warm and neutral phases by the CCE Long-Term Ecological Research (LTER) program. We find that, contrary to expectations from prominent global algorithms, export efficiency (e-ratio = export / primary productivity) is positively correlated with temperature and negatively correlated with net primary productivity (NPP). We attribute these results to the substantial horizontal advection found within the region, and verify this assumption by using a Lagrangian particle tracking model to estimate water mass age. We further suggest that sinking particles in the CCE are comprised of a recently-produced, rapidly-sinking component (likely mesozooplankton fecal pellets) and a longer-lived, slowly-sinking component that is likely advected long distances prior to export. We determine a new algorithm for estimating particle export in the CCE from NPP (Export = 0.08 · NPP + 72 mg C m-2 d-1). We apply this algorithm to a two-decade long time series of NPP in the CCE to estimate spatial and interannual variability across multiple ENSO phases. Reduced export during the warm anomaly of 2014-2015 and El Niño 2015-2016 resulted primarily from decreased export in the coastal upwelling region of the CCE; the oligotrophic offshore region exhibited comparatively low seasonal and interannual variability in flux. The model resolves intra-regional patterns of in situ export measurements, and provides a valuable contrast to global export models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0637 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 984  
Permanent link to this record
 

 
Author Kelly, T.B.; Goericke, R.; Kahru, M.; Song, H.; Stukel, M.R. url  doi
openurl 
  Title CCE II: Spatial and interannual variability in export efficiency and the biological pump in an eastern boundary current upwelling system with substantial lateral advection Type $loc['typeJournal Article']
  Year 2018 Publication Deep Sea Research Part I: Oceanographic Research Papers Abbreviated Journal Deep Sea Research Part I: Oceanographic Research Papers  
  Volume 140 Issue Pages 14-25  
  Keywords california current ecosystem; coastal waters; flux; frontal zone; ocean carbon-cycle; oceanography; pacific; sea; sinking; time-series; Zooplankton  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0637 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1022  
Permanent link to this record
 

 
Author Kent, E.C.; Rayner, N.A.; Berry, D.I.; Eastman, R.; Grigorieva, V.G.; Huang, B.; Kennedy, J.J.; Smith, S.R.; Willett, K.M. url  doi
openurl 
  Title Observing Requirements for Long-Term Climate Records at the Ocean Surface Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages 441  
  Keywords  
  Abstract Observations of conditions at the ocean surface have been made for centuries, contributing to some of the longest instrumental records of climate change. Most prominent is the climate data record (CDR) of sea surface temperature (SST), which is itself essential to the majority of activities in climate science and climate service provision. A much wider range of surface marine observations is available however, providing a rich source of data on past climate. We present a general error model describing the characteristics of observations used for the construction of climate records, illustrating the importance of multi-variate records with rich metadata for reducing uncertainty in CDRs. We describe the data and metadata requirements for the construction of stable, multi-century marine CDRs for variables important for describing the changing climate: SST, mean sea level pressure, air temperature, humidity, winds, clouds, and waves. Available sources of surface marine data are reviewed in the context of the error model. We outline the need for a range of complementary observations, including very high quality observations at a limited number of locations and also observations that sample more broadly but with greater uncertainty. We describe how high-resolution modern records, particularly those of high-quality, can help to improve the quality of observations throughout the historical record. We recommend the extension of internationally-coordinated data management and curation to observation types that do not have a primary focus of the construction of climate records. Also recommended is reprocessing the existing surface marine climate archive to improve and quantify data and metadata quality and homogeneity. We also recommend the expansion of observations from research vessels and high quality moorings, routine observations from ships and from data and metadata rescue. Other priorities include: field evaluation of sensors; resources for the process of establishing user requirements and determining whether requirements are being met; and research to estimate uncertainty, quantify biases and to improve methods of construction of CDRs. The requirements developed in this paper encompass specific actions involving a variety of stakeholders, including funding agencies, scientists, data managers, observing network operators, satellite agencies, and international co-ordination bodies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1040  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)