Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Misra, V.; Bhardwaj, A.; Mishra, A. url  doi
openurl 
  Title Local onset and demise of the Indian summer monsoon Type $loc['typeJournal Article']
  Year 2018 Publication Climate Dynamics Abbreviated Journal  
  Volume 51 Issue 5-6 Pages 1609-1622  
  Keywords Indian monsoon; ENSO; Onset of monsoon  
  Abstract This paper introduces an objective definition of local onset and demise of the Indian summer monsoon (ISM) at the native grid of the Indian Meteorological Department's rainfall analysis based on more than 100 years of rain gauge observations. The variability of the local onset/demise of the ISM is shown to be closely associated with the All India averaged rainfall onset/demise. This association is consistent with the corresponding evolution of the slow large-scale reversals of upper air and ocean variables that raise the hope of predictability of local onset and demise of the ISM. The local onset/demise of the ISM also show robust internannual variations associated with El Nino and the Southern Oscillation and Indian Ocean dipole mode. It is also shown that the early monsoon rains over northeast India has a predictive potential for the following seasonal anomalies of rainfall and seasonal length of the monsoon over rest of India.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 360  
Permanent link to this record
 

 
Author Bhowmick, S. A.; Agarwal, N.; Ali, M. M.; Kishtawal, C. M.; Sharma, R. url  doi
openurl 
  Title Role of ocean heat content in boosting post-monsoon tropical storms over Bay of Bengal during La-Nina events Type $loc['typeJournal Article']
  Year 2019 Publication Climate Dynamics Abbreviated Journal  
  Volume 52 Issue 12 Pages 7225-7234  
  Keywords La-Niña; Bay of Bengal; Tropical cyclones; Ocean heat content  
  Abstract This study aims to analyze the role of ocean heat content in boosting the post-monsoon cyclonic activities over Bay of Bengal during La-Niña events. In strong La-Niña years, accumulated cyclone energy in Bay of Bengal is much more as compared to any other year. It is observed that during late June to October of moderate to strong La-Nina years, western Pacific is warmer. Sea surface temperature anomaly of western Pacific Ocean clearly indicates the presence of relatively warmer water mass in the channel connecting the Indian Ocean and Pacific Ocean, situated above Australia. Ocean currents transport the heat zonally from Pacific to South eastern Indian Ocean. Excess heat of the southern Indian Ocean is eventually transported to eastern equatorial Indian Ocean through strong geostrophic component of ocean current. By September the northward transport of this excess heat from eastern equatorial Indian Ocean to Bay of Bengal takes place during La-Nina years boosting the cyclonic activities thereafter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 71  
Permanent link to this record
 

 
Author Laurencin, C.; Misra, V. url  doi
openurl 
  Title Characterizing the Variations of the motion of the North Atlantic tropical cyclones Type $loc['typeJournal Article']
  Year 2018 Publication Meteorology and Atmospheric Physics Abbreviated Journal Meteorol Atmos Phys  
  Volume 130 Issue 303 Pages 1-12  
  Keywords climatology; interannual scales; environment  
  Abstract In this study, we examine the seasonal and interannual variability of the North Atlantic (NATL) tropical cyclone (TC) motion from the historical Hurricane Database (HURDAT2) over the period 1988-2014. We characterize these motions based on their position, lifecycle, and seasonal cycle. The main findings of this study include: (1) of the 11,469 NATL TC fixes examined between 1988 and 2014, 81% of them had a translation speed of < 20 mph; (2) TCs in the deep tropics of the NATL are invariably slow-moving in comparison with TCs in higher latitudes. Although fast-moving TCs (> 40 mph) are exclusively found north of 30 N, the slow-moving TCs have a wide range of latitude. This is largely a consequence of the background steering flow being weaker (stronger) in the tropical (higher) latitudes with a minimum around the subtropical latitudes of NATL; (3) there is an overall decrease in the frequency of all categories of translation speed of TCs in warm relative to cold El Niño Southern Oscillation (ENSO) years. However, in terms of the percentage change, TCs with a translation speed in the range of 10-20 mph display the most change (42%) in warm relative to cold ENSO years; and (4) there is an overall decrease in frequency across all categories of TC translation speed in small relative to large Atlantic Warm Pool years, but in terms of percentage change in the frequency of TCs, there is a significant and comparable change in the frequency over a wider range of translation speeds than the ENSO composites. This last finding suggests that Atlantic Warm Pool variations have a more profound impact on the translation speed of Atlantic TCs than ENSO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 991  
Permanent link to this record
 

 
Author Mende, M.; Misra, V. url  openurl
  Title Time to Flatten the Curves on COVID-19 and Climate Change. Marketing Can Help Type $loc['typeJournal Article']
  Year 2020 Publication Journal of Public Policy & Marketing Abbreviated Journal Journal of Public Policy & Marketing  
  Volume Issue Pages  
  Keywords  
  Abstract The health, economic, and social impact of the COVID-19 pandemic is unprecedented in our lifetime, and no individual in this globalized, interconnected world is immune from its effects. This pandemic is a fundamental challenge for consumers, companies, and governments. Against this background, our commentary underscores linkages between public health, environment, and economy and explores how lessons from COVID-19 can help prevent other large-scale disasters.1 We focus on global climate change (GCC), because rising temperatures increase the likelihood of future pandemics.2 Accordingly, experts consider GCC “the largest public health threat of the century” (Wyns 2020). Although societal crises are underresearched in marketing, we propose that marketers should add their expertise to help avoid future crises. Notably, the Journal of Public Policy & Marketing (JPP&M) is uniquely positioned as a premier outlet for corresponding research at the intersection of marketing and policy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1117  
Permanent link to this record
 

 
Author Zou, S.; Lozier, M.S.; Xu, X. url  doi
openurl 
  Title Latitudinal Structure of the Meridional Overturning Circulation Variability on Interannual to Decadal Time Scales in the North Atlantic Ocean Type $loc['typeJournal Article']
  Year 2020 Publication Journal of Climate Abbreviated Journal J. Climate  
  Volume 33 Issue 9 Pages 3845-3862  
  Keywords Deep convection; Ocean circulation; Thermocline circulation  
  Abstract The latitudinal structure of the Atlantic meridional overturning circulation (AMOC) variability in the North Atlantic is investigated using numerical results from three ocean circulation simulations over the past four to five decades. We show that AMOC variability south of the Labrador Sea (53°N) to 25°N can be decomposed into a latitudinally coherent component and a gyre-opposing component. The latitudinally coherent component contains both decadal and interannual variabilities. The coherent decadal AMOC variability originates in the subpolar region and is reflected by the zonal density gradient in that basin. It is further shown to be linked to persistent North Atlantic Oscillation (NAO) conditions in all three models. The interannual AMOC variability contained in the latitudinally coherent component is shown to be driven by westerlies in the transition region between the subpolar and the subtropical gyre (40°–50°N), through significant responses in Ekman transport. Finally, the gyre-opposing component principally varies on interannual time scales and responds to local wind variability related to the annual NAO. The contribution of these components to the total AMOC variability is latitude-dependent: 1) in the subpolar region, all models show that the latitudinally coherent component dominates AMOC variability on interannual to decadal time scales, with little contribution from the gyre-opposing component, and 2) in the subtropical region, the gyre-opposing component explains a majority of the interannual AMOC variability in two models, while in the other model, the contributions from the coherent and the gyre-opposing components are comparable. These results provide a quantitative decomposition of AMOC variability across latitudes and shed light on the linkage between different AMOC variability components and atmospheric forcing mechanisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0894-8755 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1106  
Permanent link to this record
 

 
Author Vinayachandran, P. N.; Davidson, Fraser; Chassignet, E. P. url  openurl
  Title Towards joint assessments, modern capabilities and new links for ocean prediction systems Type $loc['typeJournal Article']
  Year 2020 Publication Bulletin of the American Meteorological Society Abbreviated Journal Bull. Amer. Meteor. Soc.  
  Volume 101 Issue 4 Pages  
  Keywords  
  Abstract Approximately 260 individuals from forecasting centers, research laboratories, academia, and industry representing 40 countries met to discuss recent developments in operational oceanography and brainstorm about the future directions of ocean prediction services.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1091  
Permanent link to this record
 

 
Author LaCasce, J.H.; Escartin, J.; Chassignet, E.P.; Xu, X. url  doi
openurl 
  Title Jet instability over smooth, corrugated and realistic bathymetry Type $loc['typeJournal Article']
  Year 2018 Publication Journal of Physical Oceanography Abbreviated Journal J. Phys. Oceanogr.  
  Volume Issue Pages  
  Keywords  
  Abstract The stability of a horizontally- and vertically-sheared surface jet is examined, with a focus on the vertical structure of the resultant eddies. Over a flat bottom, the instability is mixed baroclinic/barotropic, producing strong eddies at depth which are characteristically shifted downstream relative to the surface eddies. Baroclinic instability is suppressed over a large slope for retrograde jets (with a flow anti-parallel to topographic wave propagation), and to a lesser extent for prograde jets (with flow parallel to topographic wave propagation), as seen previously. In such cases, barotropic (lateral) instability dominates if the jet is sufficiently narrow. This yields surface eddies whose size is independent of the slope but proportional to the jet width. Deep eddies still form, forced by interfacial motion associated with the surface eddies, but they are weaker than under baroclinic instability and are vertically aligned with the surface eddies. A sinusoidal ridge acts similarly, suppressing baroclinic instability and favoring lateral instability in the upper layer.

A ridge with a 1 km wavelength and an amplitude of roughly 10 m is sufficient to suppress baroclinic instability. Surveys of bottom roughness from bathymetry acquired with shipboard multibeam echosounding reveal that such heights are common, beneath the Kuroshio, the Antarctic Circumpolar Current and, to a lesser extent, the Gulf Stream. Consistent with this, vorticity and velocity cross sections from a 1/50° HYCOM simulation suggest that Gulf Stream eddies are vertically aligned, as in the linear stability calculations with strong topography. Thus lateral instability may be more common than previously thought, due to topography hindering vertical energy transfer.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3670 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 998  
Permanent link to this record
 

 
Author Ardhuin, F.; Chapron, B.; Maes, C.; Romeiser, R.; Gommenginger, C.; Cravatte, S.; Morrow, R.; Donlon, C.; Bourassa, M. url  doi
openurl 
  Title Satellite Doppler observations for the motions of the oceans Type $loc['typeJournal Article']
  Year 2019 Publication Bulletin of the American Meteorological Society Abbreviated Journal Bull. Amer. Meteor. Soc.  
  Volume Issue Pages  
  Keywords  
  Abstract Satellite remote sensing has revolutionized oceanography, starting from sea surface temperature, ocean color, sea level, winds, waves, and the recent addition of sea surface salinity, providing a global view of upper ocean processes. The possible addition of a direct measurement of surface velocities related to currents, winds and waves opens great opportunities for research and applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-0007 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1025  
Permanent link to this record
 

 
Author Liu, Q.; Tan, Z-M.; Sun, J.; Hou, Y.; Fu, C.; Wu, Z. url  openurl
  Title Changing rapid weather variability increases influenza epidemic risk in a warming climate Type $loc['typeJournal Article']
  Year 2020 Publication Environmental Research Letters Abbreviated Journal Environmental Research Letters  
  Volume 15 Issue 4 Pages  
  Keywords  
  Abstract The continuing change of the Earth's climate is believed to affect the influenza viral activity and transmission in the coming decades. However, a consensus of the severity of the risk of influenza epidemic in a warming climate has not been reached. It was previously reported that the warmer winter can reduce influenza epidemic-caused mortality, but this relation cannot explain the deadly influenza epidemic in many countries over northern mid-latitudes in the winter of 2017-2018, one of the warmest winters in recent decades. Here we reveal that the widely spread 2017-2018 influenza epidemic can be attributed to the abnormally strong rapid weather variability. We demonstrate, from historical data, that the large rapid weather variability in autumn can precondition the deadly influenza epidemic in the subsequent months in highly populated northern mid-latitudes; and the influenza epidemic season of 2017-2018 was a typical case. We further show that climate model projections reach a consensus that the rapid weather variability in autumn will continue to strengthen in some regions of northern mid-latitudes in a warming climate, implying that the risk of influenza epidemic may increase 20% to 50% in some highly populated regions in later 21st century.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1070  
Permanent link to this record
 

 
Author Robinson, W.; Speich, S.; Chassignet, E. url  doi
openurl 
  Title Exploring the Interplay Between Ocean Eddies and the Atmosphere Type $loc['typeJournal Article']
  Year 2018 Publication Eos Abbreviated Journal Eos  
  Volume 99 Issue Pages  
  Keywords Mesoscale; Climate; Variability; Atmospheric  
  Abstract Climate models, for the first time, have sufficient resolution to capture mesoscale ocean eddies and their interactions with the atmosphere.New model results suggest that the atmosphere, at weather scales or larger, responds to cumulative effects of the much smaller ocean eddies. Intriguing new model results presented at the workshop suggested that the atmosphere, at weather scales or larger.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2324-9250 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ rl18 @ Serial 988  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)