Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kelly, T.B.; Davison, P.C.; Goericke, R.; Landry, M.R.; Ohman, M.D.; Stukel, M,R. doi  openurl
  Title The Importance of Mesozooplankton Diel Vertical Migration for Sustaining a Mesopelagic Food Web Type $loc['typeJournal Article']
  Year 2019 Publication FRONTIERS IN MARINE SCIENCE Abbreviated Journal  
  Volume 6 Issue Pages  
  Keywords  
  Abstract We used extensive ecological and biogeochemical measurements obtained from quasi-Lagrangian experiments during two California Current Ecosystem Long-Term Ecosystem Research cruises to analyze carbon fluxes between the epipelagic and mesopelagic zones using a linear inverse ecosystem model (LIEM). Measurement constraints on the model include C-14 primary productivity, dilution-based microzooplankton grazing rates, gut pigment-based mesozooplankton grazing rates (on multiple zooplankton size classes), Th-234:U-238 disequilibrium and sediment trap measured carbon export, and metabolic requirements of micronekton, zooplankton, and bacteria. A likelihood approach (Markov Chain Monte Carlo) was used to estimate the resulting flow uncertainties from a sample of potential flux networks. Results highlight the importance of mesozooplankton active transport (i.e., diel vertical migration) in supplying the carbon demand of mesopelagic organisms and sequestering carbon dioxide from the atmosphere. In nine water parcels ranging from a coastal bloom to offshore oligotrophic conditions, mesozooplankton active transport accounted for 18-84% (median: 42%) of the total carbon transfer to the mesopelagic, with gravitational settling of POC (12-55%; median: 37%), and subduction (2-32%; median: 14%) providing the majority of the remainder. Vertically migrating zooplankton contributed to downward carbon flux through respiration and excretion at depth and via mortality losses to predatory zooplankton and mesopelagic fish (e.g., myctophids and gonostomatids). Sensitivity analyses showed that the results of the LIEM were robust to changes in nekton metabolic demand, rates of bacterial production, and mesozooplankton gross growth efficiency. This analysis suggests that prior estimates of zooplankton active transport based on conservative estimates of standard (rather than active) metabolism are likely too low.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1084  
Permanent link to this record
 

 
Author Kent, E.C.; Rayner, N.A.; Berry, D.I.; Eastman, R.; Grigorieva, V.G.; Huang, B.; Kennedy, J.J.; Smith, S.R.; Willett, K.M. url  doi
openurl 
  Title Observing Requirements for Long-Term Climate Records at the Ocean Surface Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages 441  
  Keywords  
  Abstract Observations of conditions at the ocean surface have been made for centuries, contributing to some of the longest instrumental records of climate change. Most prominent is the climate data record (CDR) of sea surface temperature (SST), which is itself essential to the majority of activities in climate science and climate service provision. A much wider range of surface marine observations is available however, providing a rich source of data on past climate. We present a general error model describing the characteristics of observations used for the construction of climate records, illustrating the importance of multi-variate records with rich metadata for reducing uncertainty in CDRs. We describe the data and metadata requirements for the construction of stable, multi-century marine CDRs for variables important for describing the changing climate: SST, mean sea level pressure, air temperature, humidity, winds, clouds, and waves. Available sources of surface marine data are reviewed in the context of the error model. We outline the need for a range of complementary observations, including very high quality observations at a limited number of locations and also observations that sample more broadly but with greater uncertainty. We describe how high-resolution modern records, particularly those of high-quality, can help to improve the quality of observations throughout the historical record. We recommend the extension of internationally-coordinated data management and curation to observation types that do not have a primary focus of the construction of climate records. Also recommended is reprocessing the existing surface marine climate archive to improve and quantify data and metadata quality and homogeneity. We also recommend the expansion of observations from research vessels and high quality moorings, routine observations from ships and from data and metadata rescue. Other priorities include: field evaluation of sensors; resources for the process of establishing user requirements and determining whether requirements are being met; and research to estimate uncertainty, quantify biases and to improve methods of construction of CDRs. The requirements developed in this paper encompass specific actions involving a variety of stakeholders, including funding agencies, scientists, data managers, observing network operators, satellite agencies, and international co-ordination bodies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1040  
Permanent link to this record
 

 
Author Kim, D.; Lee, S.-K.; Lopez, H.; Foltz, G.R.; Misra, V.; Kumar, A. url  doi
openurl 
  Title On the Role of Pacific-Atlantic SST Contrast and Associated Caribbean Sea Convection in August-October U.S. Regional Rainfall Variability Type $loc['typeJournal Article']
  Year 2020 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.  
  Volume 47 Issue 11 Pages  
  Keywords Pacific‐ Atlantic SST interaction; Atlantic Warm pool; Caribbean Sea; U.S. precipitation  
  Abstract This study investigates the large‐scale atmospheric processes that lead to U.S. precipitation variability in late summer to midfall (August–October; ASO) and shows that the well‐recognized relationship between North Atlantic Subtropical High and U.S. precipitation in peak summer (June–August) significantly weakens in ASO. The working hypothesis derived from our analysis is that in ASO convective activity in the Caribbean Sea, modulated by the tropical Pacific‐Atlantic sea surface temperature (SST) anomaly contrast, directly influences the North American Low‐Level Jet and thus U.S. precipitation east of the Rockies, through a Gill‐type response. This hypothesis derived from observations is strongly supported by a long‐term climate model simulation and by a linear baroclinic atmospheric model with prescribed diabatic forcings in the Caribbean Sea. This study integrates key findings from previous studies and advances a consistent physical rationale that links the Pacific‐Atlantic SST anomaly contrast, Caribbean Sea convective activity, and U.S. rainfall in ASO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-8276 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1110  
Permanent link to this record
 

 
Author Kranz, S.A.; Wang, S.; Kelly, T.B.; Stukel, M.R.; Goericke, R.; Landry, M.R.; Cassar, N. url  doi
openurl 
  Title Lagrangian Studies of Marine Production: A Multimethod Assessment of Productivity Relationships in the California Current Ecosystem Upwelling Region Type $loc['typeJournal Article']
  Year 2020 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 125 Issue 6 Pages  
  Keywords gross primary production; long‐ term ecological research; equilibrium inlet mass spectrometry; carbon export; net community production  
  Abstract A multimethod process‐oriented investigation of diverse productivity measures in the California Current Ecosystem (CCE) Long‐Term Ecological Research study region, a complex physical environment, is presented. Seven multiday deployments covering a transition region from high to low productivity were conducted over two field expeditions (spring 2016 and summer 2017). Employing a Lagrangian study design, water parcels were followed over several days, comparing 24‐h in situ measurements (14C and 15NO3 ‐uptake, dilution estimates of phytoplankton growth, and microzooplankton grazing) with high‐resolution productivity measurements by fast repetition rate fluorometry (FRRF) and equilibrium inlet mass spectrometry (EIMS), and integrated carbon export measuremnts using sediment traps. Results show the importance of accounting for temporal and fine spatial scale variability when estimating ecosystem production. FRRF and EIMS measurements resolved diel patterns in gross primary and net community production. Diel productivity changes agreed well with comparably more traditional measurements. While differences in productivity metrics calculated over different time intervals were considerable, as those methods rely on different base assumptions, the data can be used to explain ecosystem processes which would otherwise have gone unnoticed. The processes resolved from this method comparison further understanding of temporal and spatial coupling and decoupling of surface productivity and potential carbon burial in a gradient from coastal to offshore ecosystems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1113  
Permanent link to this record
 

 
Author Laxenaire, R., Speich, S., & Alexandre S url  openurl
  Title Evolution of the thermohaline structure of one Agulhas Ring reconstructed from satellite altimetry and Argo floats. Journal of Geophysical Research Type $loc['typeJournal Article']
  Year 2019 Publication Oceans Abbreviated Journal  
  Volume 124 Issue 12 Pages 8969-9003  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1096  
Permanent link to this record
 

 
Author Lee, C.M.; Starkweather, S.; Eicken, H.; Timmermans, M.-L.; Wilkinson, J.; Sandven, S.; Dukhovskoy, D.; Gerland, S.; Grebmeier, J.; Intrieri, J.M.; Kang, S.-H.; McCammon, M.; Nguyen, A.T.; Polyakov, I.; Rabe, B.; Sagen, H.; Seeyave, S.; Volkov, D.; Beszczynska-Möller, A.; Chafik, L.; Dzieciuch, M.; Goni, G.; Hamre, T.; King, A.L.; Olsen, A.; Raj, R.P.; Rossby, T.; Skagseth, Ø.; Søiland, H.; Sørensen, K. url  doi
openurl 
  Title A Framework for the Development, Design and Implementation of a Sustained Arctic Ocean Observing System Type $loc['typeJournal Article']
  Year 2019 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.  
  Volume 6 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-7745 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1044  
Permanent link to this record
 

 
Author Liu, Q.; Tan, Z-M.; Sun, J.; Hou, Y.; Fu, C.; Wu, Z. url  openurl
  Title Changing rapid weather variability increases influenza epidemic risk in a warming climate Type $loc['typeJournal Article']
  Year 2020 Publication Environmental Research Letters Abbreviated Journal Environmental Research Letters  
  Volume 15 Issue 4 Pages  
  Keywords  
  Abstract The continuing change of the Earth's climate is believed to affect the influenza viral activity and transmission in the coming decades. However, a consensus of the severity of the risk of influenza epidemic in a warming climate has not been reached. It was previously reported that the warmer winter can reduce influenza epidemic-caused mortality, but this relation cannot explain the deadly influenza epidemic in many countries over northern mid-latitudes in the winter of 2017-2018, one of the warmest winters in recent decades. Here we reveal that the widely spread 2017-2018 influenza epidemic can be attributed to the abnormally strong rapid weather variability. We demonstrate, from historical data, that the large rapid weather variability in autumn can precondition the deadly influenza epidemic in the subsequent months in highly populated northern mid-latitudes; and the influenza epidemic season of 2017-2018 was a typical case. We further show that climate model projections reach a consensus that the rapid weather variability in autumn will continue to strengthen in some regions of northern mid-latitudes in a warming climate, implying that the risk of influenza epidemic may increase 20% to 50% in some highly populated regions in later 21st century.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1070  
Permanent link to this record
 

 
Author Liu, Y.; Tan, Z.-M.; Wu, Z. url  doi
openurl 
  Title Noninstantaneous Wave-CISK for the Interaction between Convective Heating and Low-Level Moisture Convergence in the Tropics Type $loc['typeJournal Article']
  Year 2019 Publication Journal of the Atmospheric Sciences Abbreviated Journal J. Atmos. Sci.  
  Volume 76 Issue 7 Pages 2083-2101  
  Keywords Convection; Diabatic heating; Moisture; moisture budget  
  Abstract The interaction between tropical convective heating and thermally forced circulation is investigated using a global dry primitive-equation model with the parameterization of wave-conditional instability of the second kind (CISK). It is demonstrated that deep convective heating can hardly sustain itself through the moisture convergence at low levels regardless of the fraction of immediate consumption of converged moisture. In contrast, when the fraction is large, shallow convective heating and its forced circulation exhibit preferred growth of small scales. As the “CISK catastrophe” mainly comes from the instantaneous characters of moisture-convection feedback in the conventional wave-CISK, a noninstantaneous wave-CISK is proposed, which highlights the accumulation-consumption (AC) time scale for the convective heating accumulation and/or the converged moisture consumption. In the new wave-CISK, once moisture is converged, the release of latent heat takes place gradually within an AC time scale. In this sense, convective heating is not only related to the instantaneous moisture convergence at the current time, but also to that which occurred in the past period of the AC time scale. The noninstantaneous wave-CISK could guarantee the occurrence of convective heating and/or moisture convergence at larger scales, and then favor the growth of long waves, and thus solve the problem of CISK catastrophe. With the new wave-CISK and AC time scale of 2 days, the simulated convective heating-driven system bears a large similarity to that of the observed convectively coupled Kelvin wave.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4928 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1065  
Permanent link to this record
 

 
Author Magar, V.; Godínez, V.M.; Gross, M.S.; López-Mariscal, M.; Bermúdez-Romero, A.; Candela, J.; and Zamudio, L. url  openurl
  Title In-stream Energy by Tidal and Wind-driven Currents: An Analysis for the Gulf of California Type $loc['typeJournal Article']
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1101  
Permanent link to this record
 

 
Author Maloney, E.D.; Gettelman, A.; Ming, Y.; Neelin, J.D.; Barrie, D.; Mariotti, A.; Chen, C.-C.; Coleman, D.R.B.; Kuo, Y.-H.; Singh, B.; Annamalai, H.; Berg, A.; Booth, J.F.; Camargo, S.J.; Dai, A.; Gonzalez, A.; Hafner, J.; Jiang, X.; Jing, X.; Kim, D.; Kumar, A.; Moon, Y.; Naud, C.M.; Sobel, A.H.; Suzuki, K.; Wang, F.; Wang, J.; Wing, A.A.; Xu, X.; Zhao, M. url  doi
openurl 
  Title Process-Oriented Evaluation of Climate and Weather Forecasting Models Type $loc['typeJournal Article']
  Year 2019 Publication Bulletin of the American Meteorological Society Abbreviated Journal Bull. Amer. Meteor. Soc.  
  Volume 100 Issue 9 Pages 1665-1686  
  Keywords  
  Abstract Realistic climate and weather prediction models are necessary to produce confidence in projections of future climate over many decades and predictions for days to seasons. These models must be physically justified and validated for multiple weather and climate processes. A key opportunity to accelerate model improvement is greater incorporation of process-oriented diagnostics (PODs) into standard packages that can be applied during the model development process, allowing the application of diagnostics to be repeatable across multiple model versions and used as a benchmark for model improvement. A POD characterizes a specific physical process or emergent behavior that is related to the ability to simulate an observed phenomenon. This paper describes the outcomes of activities by the Model Diagnostics Task Force (MDTF) under the NOAA Climate Program Office (CPO) Modeling, Analysis, Predictions and Projections (MAPP) program to promote development of PODs and their application to climate and weather prediction models. MDTF and modeling center perspectives on the need for expanded process-oriented diagnosis of models are presented. Multiple PODs developed by the MDTF are summarized, and an open-source software framework developed by the MDTF to aid application of PODs to centers' model development is presented in the context of other relevant community activities. The paper closes by discussing paths forward for the MDTF effort and for community process-oriented diagnosis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-0007 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1088  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)