Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Roberts, M.J.; Jackson, L.C.; Roberts, C.D.; Meccia, V.; Docquier, D.; Koenigk, T.; Ortega, P.; Moreno‐ Chamarro, E.; Bellucci, A.; Coward, A.; Drijfhout, S.; Exarchou, E.; Gutjahr, O.; Hewitt, H.; Iovino, D.; Lohmann, K.; Putrasahan, D.; Schiemann, R.; Seddon, J.; Terray, L.; Xu, X.; Zhang, Q.; Chang, P.; Yeager, S.G.; Castruccio, F.S.; Zhang. C.; Wu, L. url  openurl
  Title Sensitivity of the Atlantic Meridional Overturning Circulation to Model Resolution in CMIP6 HighResMIP Simulations and Implications for Future Changes Type $loc['typeJournal Article']
  Year 2020 Publication Journal of Advances in Modeling Earth Systems Abbreviated Journal J. Adv. Model. Earth Syst.  
  Volume Issue Pages Accepted  
  Keywords  
  Abstract A multi‐model, multi‐resolution ensemble using CMIP6 HighResMIP coupled experiments is used to assess the performance of key aspects of the North Atlantic circulation. The Atlantic Meridional Overturning Circulation (AMOC), and related heat transport, tends to become stronger as ocean model resolution is enhanced, better agreeing with observations at 26.5°N. However for most models the circulation remains too shallow compared to observations, and has a smaller temperature contrast between the northward and southward limbs of the AMOC. These biases cause the northward heat transport to be systematically too low for a given overturning strength. The higher resolution models also tend to have too much deep mixing in the subpolar gyre.

In the period 2015‐2050 the overturning circulation tends to decline more rapidly in the higher resolution models, which is related to both the mean state and to the subpolar gyre contribution to deep water formation. The main part of the decline comes from the Florida Current component of the circulation. Such large declines in AMOC are not seen in the models with resolutions more typically used for climate studies, suggesting an enhanced risk for Northern Hemisphere climate change. However, only a small number of different ocean models are included in the study.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1109  
Permanent link to this record
 

 
Author Shropshire, T.; Morey, S. L.; Chassignet, E. P.; Bozec, A.; Coles, V.J.; Landry, M.R.; Swalethorp, R.; Zapfe, G. and Stukel, M.R. url  doi
openurl 
  Title Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical-biogeochemical model Type $loc['typeJournal Article']
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Zooplankton play an important role in global biogeochemistry and their secondary production supports valuable fisheries of the world's oceans. Currently, zooplankton abundances cannot be estimated using remote sensing techniques. Hence, coupled physical-biogeochemical models (PBMs) provide an important tool for studying zooplankton on regional and global scales. However, evaluating the accuracy of zooplankton abundance estimates from PBMs has been a major challenge as a result of sparse observations. In this study, we configure a PBM for the Gulf of Mexico (GoM) from 1993&#65533;2012 and validate the model against an extensive combination of in situ biomass and rate measurements including total mesozooplankton biomass, size-fractionated mesozooplankton biomass and grazing rates, microzooplankton specific grazing rates, surface chlorophyll, deep chlorophyll maximum depth, phytoplankton specific growth rates, and net primary production. Spatial variability in mesozooplankton biomass climatology observed in a multi-decadal database for the northern GoM is well resolved by the model with a statistically significant (p&#8201;<&#8201;0.01) correlation of 0.90. Mesozooplankton secondary production for the region averaged 66&#8201;+&#8201;8&#8201;mt&#8201;C&#8201;yr&#8722;1 equivalent to approximately 10&#8201;% of NPP and ranged from 51 to 82&#8201;mt&#8201;C&#8201;yr&#8722;1. In terms of diet, model results from the shelf regions suggest that herbivory is the dominant feeding mode for small mesozooplankton (<&#8201;1-mm) whereas larger mesozooplankton are primarily carnivorous. However, in open-ocean, oligotrophic regions, both groups of mesozooplankton have proportionally greater reliance on heterotrophic protists as a food source. This highlights the important role of microbial and protistan food webs in sustaining mesozooplankton biomass in the GoM which serves as the primary food source for early life stages of many commercially-important fish species, including tuna.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1095  
Permanent link to this record
 

 
Author Stukel, M.R.; Barbeau, K.A. url  doi
openurl 
  Title Investigating the Nutrient Landscape in a Coastal Upwelling Region and Its Relationship to the Biological Carbon Pump Type $loc['typeJournal Article']
  Year 2020 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Lett.  
  Volume 47 Issue 6 Pages e2020GL087351  
  Keywords  
  Abstract We investigated nutrient patterns and their relationship to vertical carbon export using results from 38 Lagrangian experiments in the California Current Ecosystem. The dominant mode of variability reflected onshore-offshore nutrient gradients. A secondary mode of variability was correlated with silica excess and dissolved iron and likely reflects regional patterns of iron-limitation. The biological carbon pump was enhanced in high nutrient and Fe-stressed regions. Patterns in the nutrient landscape proved to be better predictors of the vertical flux of sinking particles than contemporaneous measurements of net primary production. Our results suggest an important role for Fe-stressed diatoms in vertical carbon flux. They also suggest that either preferential recycling of N or non-Redfieldian nutrient uptake by diatoms may lead to high PO:NO and Si(OH):NO ratios, following export of P- and Si-enriched organic matter. Increased export following Fe-stress may partially explain inverse relationships between net primary productivity and export efficiency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-8276 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1112  
Permanent link to this record
 

 
Author Vinayachandran, P. N.; Davidson, Fraser; Chassignet, E. P. url  openurl
  Title Towards joint assessments, modern capabilities and new links for ocean prediction systems Type $loc['typeJournal Article']
  Year 2020 Publication Bulletin of the American Meteorological Society Abbreviated Journal Bull. Amer. Meteor. Soc.  
  Volume 101 Issue 4 Pages  
  Keywords  
  Abstract Approximately 260 individuals from forecasting centers, research laboratories, academia, and industry representing 40 countries met to discuss recent developments in operational oceanography and brainstorm about the future directions of ocean prediction services.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1091  
Permanent link to this record
 

 
Author Wang, S.; Kranz, S.A.; Kelly, T.B.; Song, H.; Stukel, M.R.; Cassar, N. url  doi
openurl 
  Title Lagrangian Studies of Net Community Production: The Effect of Diel and Multiday Nonsteady State Factors and Vertical Fluxes on O2/Ar in a Dynamic Upwelling Region Type $loc['typeJournal Article']
  Year 2020 Publication Journal of Geophysical Research: Biogeosciences Abbreviated Journal J. Geophys. Res. Biogeosci.  
  Volume 125 Issue 6 Pages e2019JG005569  
  Keywords net community production; O2/Ar; California Current Ecosystem; Lagrangian measurements; vertical fluxes; nonsteady state  
  Abstract The ratio of dissolved oxygen to argon in seawater is frequently employed to estimate rates of net community production (NCP) in the oceanic mixed layer. The in situ O2/Ar&#8208;based method accounts for many physical factors that influence oxygen concentrations, permitting isolation of the biological oxygen signal produced by the balance of photosynthesis and respiration. However, this technique traditionally relies upon several assumptions when calculating the mixed&#8208;layer O2/Ar budget, most notably the absence of vertical fluxes of O2/Ar and the principle that the air&#8208;sea gas exchange of biological oxygen closely approximates net productivity rates. Employing a Lagrangian study design and leveraging data outputs from a regional physical oceanographic model, we conducted in situ measurements of O2/Ar in the California Current Ecosystem in spring 2016 and summer 2017 to evaluate these assumptions within a &#65533;worst&#8208;case&#65533; field environment. Quantifying vertical fluxes, incorporating nonsteady state changes in O2/Ar, and comparing NCP estimates evaluated over several day versus longer timescales, we find differences in NCP metrics calculated over different time intervals to be considerable, also observing significant potential effects from vertical fluxes, particularly advection. Additionally, we observe strong diel variability in O2/Ar and NCP rates at multiple stations. Our results reemphasize the importance of accounting for vertical fluxes when interpreting O2/Ar&#8208;derived NCP data and the potentially large effect of nonsteady state conditions on NCP evaluated over shorter timescales. In addition, diel cycles in surface O2/Ar can also bias interpretation of NCP data based on local productivity and the time of day when measurements were made.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-8953 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1114  
Permanent link to this record
 

 
Author Xu, X.; Chassignet, E.P.; Firing, Y.L.; Donohue, K. url  doi
openurl 
  Title Antarctic Circumpolar Current transport through Drake Passage: What can we learn from comparing high-resolution model results to observations? Type $loc['typeJournal Article']
  Year 2020 Publication Journal of Geophysical Research: Oceans Abbreviated Journal J. Geophys. Res. Oceans  
  Volume 125 Issue 7 Pages  
  Keywords  
  Abstract Uncertainty exists in the time&#8208;mean total transport of the Antarctic Circumpolar Current (ACC), the world&#65533;s strongest ocean current. The two most recent observational programs in Drake Passage, DRAKE and cDrake, yielded transports of 141 and 173.3 Sv, respectively. In this paper, we use a realistic 1/12° global ocean simulation to interpret these observational estimates and reconcile their differences. We first show that the modeled ACC transport in the upper 1000 m is in excellent agreement with repeat shipboard acoustic Doppler current profiler (SADCP) transects and that the exponentially decaying transport profile in the model is consistent with the profile derived from repeat hydrographic data. By further comparing the model results to the cDrake and DRAKE observations, we argue that the modeled 157.3 Sv transport, i.e. approximately the average of the cDrake and DRAKE estimates, is actually representative of the time&#8208;mean ACC transport through the Drake Passage. The cDrake experiment overestimated the barotropic contribution in part because the array undersampled the deep recirculation southwest of the Shackleton Fracture Zone, whereas the surface geostrophic currents used in the DRAKE estimate yielded a weaker near&#8208;surface transport than implied by the SADCP data. We also find that the modeled baroclinic and barotropic transports are not correlated, thus monitoring either baroclinic or barotropic transport alone may be insufficient to assess the temporal variability of the total ACC transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1107  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)