Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Shin, D.W.; Krishnamurti, T.N. url  doi
openurl 
  Title Improving Precipitation Forecasts over the Global Tropical Belt Type $loc['typeJournal Article']
  Year 1999 Publication Meteorology and Atmospheric Physics Abbreviated Journal Meteorology and Atmospheric Physics  
  Volume 70 Issue 1-2 Pages 1-14  
  Keywords Precipitation Forecast; Global Spectral Model; Vertical Diffusion Coefficient; Horizontal Diffusion Coefficient; Normal Mode Initialization  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7971 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 768  
Permanent link to this record
 

 
Author Kipkogei, O.; Bhardwaj, A.; Kumar, V.; Ogallo, L.A.; Opijah, F.J.; Mutemi, J.N.; Krishnamurti, T.N. url  doi
openurl 
  Title Improving multimodel medium range forecasts over the Greater Horn of Africa using the FSU superensemble Type $loc['typeJournal Article']
  Year 2016 Publication Meteorology and Atmospheric Physics Abbreviated Journal Meteorol Atmos Phys  
  Volume 128 Issue 4 Pages 441-451  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7971 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 82  
Permanent link to this record
 

 
Author Stefanova, L.; Krishnamurti, T.N. url  doi
openurl 
  Title Kinetic energy exchanges between the time scales of ENSO and the Pacific decadal oscillation Type $loc['typeJournal Article']
  Year 2011 Publication Meteorology and Atmospheric Physics Abbreviated Journal Meteorol Atmos Phys  
  Volume 114 Issue 3-4 Pages 95-105  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7971 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 286  
Permanent link to this record
 

 
Author Kang, S.-D.; Shin, D.W.; Cocke, S.; Kim, H.-D.; Jung, W.-S. url  doi
openurl 
  Title Comparison of ensemble methods for summer-time numerical weather prediction over East Asia Type $loc['typeJournal Article']
  Year 2011 Publication Meteorology and Atmospheric Physics Abbreviated Journal Meteorol Atmos Phys  
  Volume 113 Issue 1-2 Pages 27-38  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7971 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 305  
Permanent link to this record
 

 
Author Peng, M.S.; Maue, R.N.; Reynolds, C.A.; Langland, R.H. url  doi
openurl 
  Title Hurricanes Ivan, Jeanne, Karl (2004) and mid-latitude trough interactions Type $loc['typeJournal Article']
  Year 2007 Publication Meteorology and Atmospheric Physics Abbreviated Journal Meteorol. Atmos. Phys.  
  Volume 97 Issue 1-4 Pages 221-237  
  Keywords Vorticity; Cyclone; Tropical Cyclone; Singular Vector; Extratropical Cyclone  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7971 ISBN Medium  
  Area Expedition Conference  
  Funding NRL internship Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 699  
Permanent link to this record
 

 
Author Parfitt, R.; Ummenhofer, C.C.; Buckley, B.M.; Hansen, K.G.; D'Arrigo, R.D. url  doi
openurl 
  Title Distinct seasonal climate drivers revealed in a network of tree-ring records from Labrador, Canada Type $loc['typeJournal Article']
  Year 2020 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 54 Issue 3-4 Pages 1897-1911  
  Keywords BLUE INTENSITY; LATEWOOD DENSITY; TEMPERATURE; DENDROCLIMATOLOGY; PRECIPITATION; STANDARDIZATION; VARIABILITY; NUNATSIAVUT; TRENDS; GULF  
  Abstract Traditionally, high-latitude dendroclimatic studies have focused on measurements of total ring width (RW), with the maximum density of the latewood (MXD) serving as a complementary variable. Whilst MXD has typically improved the strength of the growing season climate connection over that of RW, its measurements are costly and time-consuming. Recently, a less costly and more time-efficient technique to extract density measurements has emerged, based on lignin's propensity to absorb blue light. This Blue Intensity (BI) methodology is based on image analyses of finely-sanded core samples, and the relative ease with which density measurements can be extracted allows for significant increases in spatio-temporal sample depth. While some studies have attempted to combine RW and MXD as predictors for summer temperature reconstructions, here we evaluate a systematic comparison of the climate signal for RW and latewood BI (LWBI) separately, using a recently updated and expanded tree ring database for Labrador, Canada. We demonstrate that while RW responds primarily to climatic drivers earlier in the growing season (January-April), LWBI is more responsive to climate conditions during late spring and summer (May-August). Furthermore, RW appears to be driven primarily by large-scale atmospheric dynamics associated with the Pacific North American pattern, whilst LWBI is more closely associated with local climate conditions, themselves linked to the behaviour of the Atlantic Multidecadal Oscillation. Lastly, we demonstrate that anomalously wide or narrow growth rings consistently respond to the same climate drivers as average growth years, whereas the sensitivity of LWBI to extreme climate conditions appears to be enhanced.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1119  
Permanent link to this record
 

 
Author Misra, V.; Bhardwaj, A. url  doi
openurl 
  Title Understanding the seasonal variations of Peninsular Florida Type $loc['typeJournal Article']
  Year 2019 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 54 Issue 3-4 Pages 1873-1885  
  Keywords  
  Abstract This study accounts for varying lengths of the seasons, which turns out to be an important consideration of climate variability over Peninsular Florida (PF). We introduce an objective definition for the onset and demise of the winter season over relatively homogenous regions within PF: North Florida (NF), Central Florida (CF), Southeast Florida (SeF), and Southwest Florida (SwF). We first define the summer season based on precipitation, and follow this by defining the winter season using surface temperature analysis. As a consequence, of these definitions of the summer and the winter seasons, the lengths of the transition seasons of spring and fall also vary from year to year. The onset date variations have a robust relationship with the corresponding seasonal length anomalies across PF for all seasons. Furthermore, with some exceptions, the onset date variations are associated with corresponding seasonal rainfall and surface temperature anomalies, which makes monitoring the onset date of the seasons a potentially useful predictor of the following evolution of the season. In many of these instances the demise date variations of the season also have a bearing on the preceding seasonal length and seasonal rainfall anomalies. However, we find that variations of the onset and the demise dates are independent of each other across PF and in all seasons. We also find that the iconic ENSO teleconnection over PF is exclusive to the seasonal rainfall anomalies and it does not affect the variations in the length of the winter season. Given these findings, we strongly suggest monitoring and predicting the variations in the lengths of the seasons over PF as it is not only an important metric of climate variability but also beneficial to reduce a variety of risks of impact of anomalous seasonal climate variations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1098  
Permanent link to this record
 

 
Author Sun, J.; Wu, Z. url  doi
openurl 
  Title Isolating spatiotemporally local mixed Rossby-gravity waves using multi-dimensional ensemble empirical mode decomposition Type $loc['typeJournal Article']
  Year 2019 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume Issue 3-4 Pages 1383-1405  
  Keywords  
  Abstract Tropical waves have relatively large amplitudes in and near convective systems, attenuating as they propagate away from the area where they are generated due to the dissipative nature of the atmosphere. Traditionally, nonlocal analysis methods, such as those based on the Fourier transform, are applied to identify tropical waves. However, these methods have the potential to lead to the misidentification of local wavenumbers and spatial locations of local wave activities. To address this problem, we propose a new method for analyzing tropical waves, with particular focus placed on equatorial mixed Rossby-gravity (MRG) waves. The new tropical wave analysis method is based on the multi-dimensional ensemble empirical mode decomposition and a novel spectral representation based on spatiotemporally local wavenumber, frequency, and amplitude of waves. We first apply this new method to synthetic data to demonstrate the advantages of the method in revealing characteristics of MRG waves. We further apply the method to reanalysis data (1) to identify and isolate the spatiotemporally heterogeneous MRG waves event by event, and (2) to quantify the spatial inhomogeneity of these waves in a wavenumber-frequency-energy diagram. In this way, we reveal the climatology of spatiotemporal inhomogeneity of MRG waves and summarize it in wavenumber-frequency domain: The Indian Ocean is dominated by MRG waves in the period range of 812 days; the western Pacific Ocean consists of almost equal energy distribution of MRG waves in the period ranges of 36 and 812 days, respectively; and the eastern tropical Pacific Ocean and the tropical Atlantic Ocean are dominated by MRG waves in the period range of 36 days. The zonal wavenumbers mostly fall within the band of 415, with Indian Ocean has larger portion of higher wavenumber (smaller wavelength components) MRG waves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1093  
Permanent link to this record
 

 
Author Bhardwaj, A.; Misra, V. url  doi
openurl 
  Title The role of air-sea coupling in the downscaled hydroclimate projection over Peninsular Florida and the West Florida Shelf Type $loc['typeJournal Article']
  Year 2019 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 53 Issue 5-6 Pages 2931-2947  
  Keywords  
  Abstract A comparative analysis of two sets of downscaled simulations of the current climate and the future climate projections over Peninsular Florida (PF) and the West Florida Shelf (WFS) is presented to isolate the role of high-resolution air-sea coupling. In addition, the downscaled integrations are also compared with the much coarser, driving global model projection to examine the impact of grid resolution of the models. The WFS region is habitat for significant marine resources, which has both commercial and recreational value. Additionally, the hydroclimatic features of the WFS and PF contrast each other. For example, the seasonal cycle of surface evaporation in these two regions are opposite in phase to one another. In this study, we downscale the Community Climate System Model version 4 (CCSM4) simulations of the late twentieth century and the mid-twenty-first century (with reference concentration pathway 8.5 emission scenario) using an atmosphere only Regional Spectral Model (RSM) at 10 km grid resolution. In another set, we downscale the same set of CCSM4 simulations using the coupled RSM-Regional Ocean Model System (RSMROMS) at 10 km grid resolution. The comparison of the twentieth century simulations suggest significant changes to the SST simulation over WFS from RSMROMS relative to CCSM4, with the former reducing the systematic errors of the seasonal mean SST over all seasons except in the boreal summer season. It may be noted that owing to the coarse resolution of CCSM4, the comparatively shallow bathymetry of the WFS and the sharp coastline along PF is poorly defined, which is significantly rectified at 10 km grid spacing in RSMROMS. The seasonal hydroclimate over PF and the WFS in the twentieth century simulation show significant bias in all three models with CCSM4 showing the least for a majority of the seasons, except in the wet June-July-August (JJA) season. In the JJA season, the errors of the surface hydroclimate over PF is the least in RSMROMS. The systematic errors of surface precipitation and evaporation are more comparable between the simulations of CCSM4 and RSMROMS, while they differ the most in moisture flux convergence. However, there is considerable improvement in RSMROMS compared to RSM simulations in terms of the seasonal bias of the hydroclimate over WFS and PF in all seasons of the year. This suggests the potential rectification impact of air-sea coupling on dynamic downscaling of CCSM4 twentieth century simulations. In terms of the climate projection in the decades of 2041-2060, the RSMROMS simulation indicate significant drying of the wet season over PF compared to moderate drying in CCSM4 and insignificant changes in the RSM projection. This contrasting projection is also associated with projected warming of SSTs along the WFS in RSMROMS as opposed to warming patterns of SST that is more zonal and across the WFS in CCSM4.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1082  
Permanent link to this record
 

 
Author Hu, X.; Cai, M.; Yang, S.; Wu, Z. url  doi
openurl 
  Title Delineation of thermodynamic and dynamic responses to sea surface temperature forcing associated with El Niño Type $loc['typeJournal Article']
  Year 2018 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 51 Issue 11-12 Pages 4329-4344  
  Keywords El Niño; SST anomalies; Thermodynamic and dynamic responses; Gill-type response  
  Abstract A new framework is proposed to gain a better understanding of the response of the atmosphere over the tropical Pacific to the radiative heating anomaly associated with the sea surface temperature (SST) anomaly in canonical El Niño winters. The new framework is based on the equilibrium balance between thermal radiative cooling anomalies associated with air temperature response to SST anomalies and other thermodynamic and dynamic processes. The air temperature anomalies in the lower troposphere are mainly in response to radiative heating anomalies associated with SST, atmospheric water vapor, and cloud anomalies that all exhibit similar spatial patterns. As a result, air temperature induced thermal radiative cooling anomalies would balance out most of the radiative heating anomalies in the lower troposphere. The remaining part of the radiative heating anomalies is then taken away by an enhancement (a reduction) of upward energy transport in the central-eastern (western) Pacific basin, a secondary contribution to the air temperature anomalies in the lower troposphere. Above the middle troposphere, radiative effect due to water vapor feedback is weak. Thermal radiative cooling anomalies are mainly in balance with the sum of latent heating anomalies, vertical and horizontal energy transport anomalies associated with atmospheric dynamic response and the radiative heating anomalies due to changes in cloud. The pattern of Gill-type response is attributed mainly to the non-radiative heating anomalies associated with convective and large-scale energy transport. The radiative heating anomalies associated with the anomalies of high clouds also contribute positively to the Gill-type response. This sheds some light on why the Gill-type atmospheric response can be easily identifiable in the upper atmosphere.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 997  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)