Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Bourassa, M. A.; Gille, S. url  openurl
  Title U.S. CLIVAR working groups on high latitude surface fluxes Type $loc['typeMagazine Article']
  Year 2008 Publication U.S. CLIVAR Variations Abbreviated Journal  
  Volume 6 Issue 1 Pages 8-11  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 686  
Permanent link to this record
 

 
Author Bellow, J. G.; Nair, P. K. R.; Martin, T. A. url  doi
openurl 
  Title Tree-Crop Interactions in Fruit Tree-based Agroforestry Systems in the Western Highlands of Guatemala: Component Yields and System Performance Type $loc['typeBook Chapter']
  Year 2008 Publication Toward Agroforestry Design. Advances in Agroforestry Abbreviated Journal  
  Volume 4 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Dordrecht Editor Jose, S.; Gordon, A. M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 906  
Permanent link to this record
 

 
Author Bellow, J., A. Mokssit, J. O'Brien, and R. Sebbari url  doi
openurl 
  Title Building national and specialised climate services Type $loc['typeBook Chapter']
  Year 2008 Publication Seasonal Climate: Forecasting and Managing Risk Abbreviated Journal  
  Volume Issue Pages 315-349  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Troccoli, A.; Harrison, M.; Anderson, D. L. T.; Mason, S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 682  
Permanent link to this record
 

 
Author Zamudio, L.; Metzger, E. J.; Hogan, P. J. url  openurl
  Title A note on coastally trapped waves generated by the wind at the Northern Bight of Panama Type $loc['typeJournal Article']
  Year 2008 Publication Atmosfera Abbreviated Journal  
  Volume 21 Issue 3 Pages 241-248  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 408  
Permanent link to this record
 

 
Author Bourassa, M. A.; Hughes, P. J.; Smith, S. R. url  openurl
  Title Surface Turbulent Flux Product Comparison Type $loc['typeMagazine Article']
  Year 2008 Publication Flux News Abbreviated Journal  
  Volume 5 Issue Pages 22-24  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding NSF, NOAA, COD Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 692  
Permanent link to this record
 

 
Author Kalnay, E.; Cai, M.; Nunez, M.; Lim, Y.-K. url  openurl
  Title Impacts of urbanization and land surface changes on climate trends Type $loc['typeMagazine Article']
  Year 2008 Publication Urban Climate News Abbreviated Journal  
  Volume 27 Issue Pages 5-9  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 685  
Permanent link to this record
 

 
Author Langland, R.H.; Maue, R.N.; Bishop, C.H. url  doi
openurl 
  Title Uncertainty in atmospheric temperature analyses Type $loc['typeJournal Article']
  Year 2008 Publication Tellus A Abbreviated Journal  
  Volume 60 Issue 4 Pages 598-603  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0280-6495 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 684  
Permanent link to this record
 

 
Author Ford, K. M. url  openurl
  Title Uncertainty in Scatterometer-Derived Vorticity Type $loc['typeManuscript']
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Vorticity, Scatterometer, Cyclone Genesis, Rrror Analysis, Tropical Storm  
  Abstract A more versatile and robust technique is developed for determining area averaged surface vorticity based on vector winds from the SeaWinds scatterometer on the QuikSCAT satellite. This improved technique is discussed in detail and compared to two previous studies by Sharp et al. (2002) and Gierach et al. (2007) that focused on early development of tropical systems. The error characteristics of the technique are examined in detail. Specifically, three independent sources of error are explored: random observational error, truncation error and representation error. Observational errors are due to random errors in the wind observations, and determined as a worst-case estimate as a function of averaging spatial scale. The observational uncertainty in vorticity averaged for a roughly circular shape with a 100 km diameter, expressed as one standard deviation, is approximately 0.5 x 10 -5 s-1 for the methodology described herein. Truncation error is associated with the assumption of linear changes between wind vectors. For accurate results, it must be estimated on a case-by-case basis. An attempt is made to determine a lower bound of truncation errors through the use of composites of tropical disturbances. This lower bound is calculated as 10-7 s-1 for the composites, which is relatively small compared to the tropical disturbance detection threshold set at 5 x 10-5 s-1, used in an earlier study. However, in more realistic conditions, uncertainty related to truncation errors is much larger than observational uncertainty. The third type of error discussed is due to the size of the area being averaged. If the wind vectors associated with a vorticity maximum are inside the perimeter of this area (away from the edges), it will be missed. This type of error is analogous to over-smoothing. Tropical and sub-tropical low pressure systems from three months of QuikSCAT observations are used to examine this error. This error results in a bias of approximately 1.5 x 10-5 s-1 for area averaged vorticity calculated on a 100 km scale compared to vorticity calculated on a 25 km scale. The discussion of these errors will benefit future projects of this nature as well as future satellite missions.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Master's thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 608  
Permanent link to this record
 

 
Author Goto, Y. url  openurl
  Title Improved Vegetation Characterization and Freeze Statistics in a Regional Spectral Model for the Florida Citrus Farming Region Type $loc['typeManuscript']
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Ensemble Forecast, Climate Model  
  Abstract This study focused on the effective use of a numerical climate model for agriculture in Florida, especially in the citrus farming region of the Florida peninsula, because of the impact of agriculture to Florida's economy. For the analyses of the ensemble, the climate models used in this study were the FSU/COAPS Global Spectral Model and FSU/COAPS Regional Spectral Model (FSU/COAPS RSM) coupled with a land-surface model. The multi-convective scheme method and variable initial conditions were used for the ensembles. Severe freezes impacting agriculture in Florida were associated with some major climate patterns, such as El Niño and Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO). In the first part of this study, seasonal ensemble integrations of the regional model were examined for the tendencies of freezes in the Florida peninsula during each ENSO or NAO phase is examined. Mean excess values of minimum temperatures from thresholds on the basis of the Generalized Pareto Distribution (GPD), which represents the extreme data in a dataset, were used to analyze the freezes in the regional model. According to some previous studies, El Niño winters obtain fewer freezes than the other ENSO phases. Although the ensemble comprised only 19 winters, the ensemble found variability patterns in minimum temperatures in each climate phase similar to the findings in the previous studies which were based on the observed data. The FSU/COAPS RSM was coupled with Community Land Model 2.0 (CLM2), to represent the land-surface conditions. Although the coupling improved the temperature forecast of the RSM, it still has a cold bias and simulates smaller diurnal temperature changes than actually occur in southern Florida. Among the prescribed surface data, Leaf Area Index (LAI) for southern Florida in the CLM2 is lower than those observed by MODIS (Moderate Resolution Imaging Spectroradiometer). In the first experiment of this part, the sensitivity of the temperature forecast to the LAI in the climate models was investigated, by modifying the LAI data in the CLM2 based on the monthly MODIS observations. In the second experiment, newly created prescribed datasets of LAI and plant functional types for the CLM2 based on the MODIS observations were applied to the RSM. The substitution increased the diurnal temperature change in southern Florida slightly but almost consistently.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 586  
Permanent link to this record
 

 
Author Moroni, D. F. url  openurl
  Title Global and Regional Diagnostic Comparison of Air-Sea Flux Parameterizations during Episodic Events Type $loc['typeManuscript']
  Year 2008 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Parameterizations, Parameterization, Algorithm, Probability Density, Probability Distribution, Pdf, Drake Passage, Kuroshio, Gulf Stream Ect, Cold Tongue, Indian Ocean, Pacific Ocean, Southern Oceans, Atlantic Ocean, Tropics, Sea-State  
  Abstract Twenty turbulent flux parameterizations are compared globally and regionally with a focus on the differences associated with episodic events. The regional focus is primarily upon the Gulf Stream and Drake Passage, as these two regions contain vastly different physical characteristics related to storm and frontal passages, varieties of sea-states, and atmospheric stability conditions. These turbulent flux parameterizations are comprised of six stress-related parameterizations [i.e., Large and Pond (1981), Large et al. (1994), Smith (1988), HEXOS (Smith et al. 1992, 1996), Taylor and Yelland (2001), and Bourassa (2006)] which are paired with a choice of three atmospheric stability parameterizations ['Neutral' assumption, Businger-Dyer (Businger 1966, Dyer 1967, Businger et al. 1971, and Dyer 1974) relations, and Beljaars-Holtslag (1991) with Benoit (1977)]. Two remaining turbulent flux algorithms are COARE version 3 (Fairall et al. 2003) and Kara et al. (2005), where Kara et al. is a polynomial curve fit approximation to COARE; these have their own separate stability considerations. The following data sets were used as a common input for parameterization: Coordinated Ocean Reference Experiment version 1.0, Reynolds daily SST, and NOAA WaveWatch III. The overlapping time period for these data sets is an eight year period (1997 through 2004). Four turbulent flux diagnostics (latent heat flux, sensible heat flux, stress, curl of the stress) are computed using the above parameterizations and analyzed by way of probability distribution functions (PDFs) and RMS analyses. The differences in modeled flux consistency are shown to vary by region and season. Modeled flux consistency is determined both qualitatively (using PDF diagrams) and quantitatively (using RMS differences), where the best consistencies are found during near-neutral atmospheric stratification. Drake Passage shows the least sensitivity (in terms of the change in the tails of PDFs) to seasonal change. Specific flux diagnostics show varying degrees of consistency between stability parameterizations. For example, the Gulf Stream's latent heat flux estimates are the most inconsistent (compared to any other flux diagnostic) during episodic and non-neutral conditions. In all stability conditions, stress and the curl of stress are the most consistent modeled flux diagnostics. Sea-state is also a very important source of modeled flux inconsistencies during episodic events for both regions.  
  Address Department of Meteorology  
  Corporate Author Thesis $loc['Ph.D. thesis']  
  Publisher Florida State University Place of Publication Tallahassee, FL Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 609  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)