Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Özgökmen, T.; Chassignet, E.; Dawson, C.; Dukhovskoy, D.; Jacobs, G.; Ledwell, J.; Garcia-Pineda, O.; MadDonald, I.; Morey, S.; Olascoaga, M.; Poje, A.; Reed, M.; Skancke, J. url  doi
openurl 
  Title Over What Area Did the Oil and Gas Spread During the 2010 Deepwater Horizon Oil Spill? Type $loc['typeJournal Article']
  Year 2016 Publication Oceanography Abbreviated Journal Oceanog  
  Volume 29 Issue 3 Pages 96-107  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1042-8275 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 87  
Permanent link to this record
 

 
Author Cintra, R.; Campos Velho, H.; Cocke, S. url  doi
openurl 
  Title Multilayer Perceptron on data assimilation system applied to FSU global model Type $loc['typeConference Article']
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords data assimilation; artificial neural networks; numerical weather prediction; inverse problem  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 3rd International Symposium on Uncertainty Quantification and Stochastic Modeling Maresias, Brazil: 15/2/2016 to 19/2/2016  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 88  
Permanent link to this record
 

 
Author Xue, W.; Xin, X.; Zhang, J.; Zhang, W.; Wu, H.; Huang, Z.; Zhang, T.; Li, H.; Ding, N.; Huang H. url  doi
openurl 
  Title Development and Testing of a Multi-model Ensemble Coupling Framework Type $loc['typeBook Chapter']
  Year 2016 Publication Development and Evaluation of High Resolution Climate System Models Abbreviated Journal  
  Volume Issue Pages 163-208  
  Keywords Climate system model; Ensemble coupling platform; Atmospheric noise; Process layout  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 91  
Permanent link to this record
 

 
Author Groenen, D.; Misra, V. url  openurl
  Title Characterization of the Rainy Season of Mesoamerica Type $loc['typeConference Article']
  Year 2016 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Meteorological Society Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 32nd Conference on Hurricanes and Tropical Meteorology  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 76  
Permanent link to this record
 

 
Author Liu, J.; Feld, D.; Xue, Y.; Garcke, J.; Soddemann, T.; Pan, P. url  doi
openurl 
  Title An efficient geosciences workflow on multi-core processors and GPUs: a case study for aerosol optical depth retrieval from MODIS satellite data Type $loc['typeJournal Article']
  Year 2016 Publication International Journal of Digital Earth Abbreviated Journal International Journal of Digital Earth  
  Volume 9 Issue 8 Pages 748-765  
  Keywords Digital earth; high-performance computing; GPU; multi-core; hybrid parallel pattern; aerosol optical depth; retrieval workflow  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1753-8947 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 86  
Permanent link to this record
 

 
Author Conlon, K.C.; Kintziger, K.W.; Jagger, M.; Stefanova, L.; Uejio, C.K.; Konrad, C. url  doi
openurl 
  Title Working with Climate Projections to Estimate Disease Burden: Perspectives from Public Health Type $loc['typeJournal Article']
  Year 2016 Publication International Journal of Environmental Research and Public Health Abbreviated Journal Int J Environ Res Public Health  
  Volume 13 Issue 8 Pages  
  Keywords *Climate Change/statistics & numerical data; Florida; Forecasting; Humans; Models, Theoretical; Public Health/*trends; United States; adaptation; attributable fraction; climate modeling; project disease burden; public health  
  Abstract There is interest among agencies and public health practitioners in the United States (USA) to estimate the future burden of climate-related health outcomes. Calculating disease burden projections can be especially daunting, given the complexities of climate modeling and the multiple pathways by which climate influences public health. Interdisciplinary coordination between public health practitioners and climate scientists is necessary for scientifically derived estimates. We describe a unique partnership of state and regional climate scientists and public health practitioners assembled by the Florida Building Resilience Against Climate Effects (BRACE) program. We provide a background on climate modeling and projections that has been developed specifically for public health practitioners, describe methodologies for combining climate and health data to project disease burden, and demonstrate three examples of this process used in Florida.  
  Address Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3220, USA. konrad@unc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1660-4601 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:27517942; PMCID:PMC4997490 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 73  
Permanent link to this record
 

 
Author Lobodin, V.V.; Maksimova, E.V.; Rodgers, R.P. url  doi
openurl 
  Title Gas Chromatography/Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry for Fingerprinting the Macondo Oil Spill Type $loc['typeJournal Article']
  Year 2016 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 88 Issue 13 Pages 6914-6922  
  Keywords  
  Abstract We report the first application of a new mass spectrometry technique (gas chromatography combined to atmospheric pressure chemical ionization tandem mass spectrometry, GC/APCI-MS/MS) for fingerprinting a crude oil and environmental samples from the largest accidental marine oil spill in history (the Macondo oil spill, the Gulf of Mexico, 2010). The fingerprinting of the oil spill is based on a trace analysis of petroleum biomarkers (steranes, diasteranes, and pentacyclic triterpanes) naturally occurring in crude oil. GC/APCI enables soft ionization of petroleum compounds that form abundant molecular ions without (or little) fragmentation. The ability to operate the instrument simultaneously in several tandem mass spectrometry (MS/MS) modes (e.g., full scan, product ion scan, reaction monitoring) significantly improves structural information content and sensitivity of analysis. For fingerprinting the oil spill, we constructed diagrams and conducted correlation studies that measure the similarity between environmental samples and enable us to differentiate the Macondo oil spill from other sources.  
  Address National High Magnetic Field Laboratory, Florida State University , 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:27281271 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 40  
Permanent link to this record
 

 
Author Landry, M.R.; Selph, K.E.; Decima, M.; Gutierrez-Rodriguez, A.; Stukel, M.R.; Taylor, A.G.; Pasulka, A.L. url  doi
openurl 
  Title Phytoplankton production and grazing balances in the Costa Rica Dome Type $loc['typeJournal Article']
  Year 2016 Publication Journal of Plankton Research Abbreviated Journal J Plankton Res  
  Volume 38 Issue 2 Pages 366-379  
  Keywords grazing; plankton community; productivity  
  Abstract We investigated phytoplankton production rates and grazing fates in the Costa Rica Dome (CRD) during summer 2010 based on dilution depth profiles analyzed by flow cytometry and pigments and mesozooplankton grazing assessed by gut fluorescence. Three community production estimates, from 14C uptake (1025 +/- 113 mg C m-2 day-1) and from dilution experiments analyzed for total Chla (990 +/- 106 mg C m-2 day-1) and flow cytometry populations (862 +/- 71 mg C m-2 day-1), exceeded regional ship-based values by 2-3-fold. Picophytoplankton accounted for 56% of community biomass and 39% of production. Production profiles extended deeper for Prochlorococcus (PRO) and picoeukaryotes than for Synechococcus (SYN) and larger eukaryotes, but 93% of total production occurred above 40 m. Microzooplankton consumed all PRO and SYN growth and two-third of total production. Positive net growth of larger eukaryotes in the upper 40 m was balanced by independently measured consumption by mesozooplankton. Among larger eukaryotes, diatoms contributed approximately 3% to production. On the basis of this analysis, the CRD region is characterized by high production and grazing turnover, comparable with or higher than estimates for the eastern equatorial Pacific. The region nonetheless displays characteristics atypical of high productivity, such as picophytoplankton dominance and suppressed diatom roles.  
  Address Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093-0227, USA; Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-7873 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:27275036; PMCID:PMC4889984 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 85  
Permanent link to this record
 

 
Author Stukel, M.R.; Benitez-Nelson, C.R.; Decima, M.; Taylor, A.G.; Buchwald, C.; Landry, M.R. url  doi
openurl 
  Title The biological pump in the Costa Rica Dome: an open-ocean upwelling system with high new production and low export Type $loc['typeJournal Article']
  Year 2016 Publication Journal of Plankton Research Abbreviated Journal J Plankton Res  
  Volume 38 Issue 2 Pages 348-365  
  Keywords Eastern Tropical Pacific; biogeochemistry; carbon flux; nutrients; plankton  
  Abstract The Costa Rica Dome is a picophytoplankton-dominated, open-ocean upwelling system in the Eastern Tropical Pacific that overlies the ocean's largest oxygen minimum zone. To investigate the efficiency of the biological pump in this unique area, we used shallow (90-150 m) drifting sediment traps and 234Th:238U deficiency measurements to determine export fluxes of carbon, nitrogen and phosphorus in sinking particles. Simultaneous measurements of nitrate uptake and shallow water nitrification allowed us to assess the equilibrium balance of new and export production over a monthly timescale. While f-ratios (new:total production) were reasonably high (0.36 +/- 0.12, mean +/- standard deviation), export efficiencies were considerably lower. Sediment traps suggested e-ratios (export/14C-primary production) at 90-100 m ranging from 0.053 to 0.067. ThE-ratios (234Th disequilibrium-derived export) ranged from 0.038 to 0.088. C:N and N:P stoichiometries of sinking material were both greater than canonical (Redfield) ratios or measured C:N of suspended particulates, and they increased with depth, suggesting that both nitrogen and phosphorus were preferentially remineralized from sinking particles. Our results are consistent with an ecosystem in which mesozooplankton play a major role in energy transfer to higher trophic levels but are relatively inefficient in mediating vertical carbon flux to depth, leading to an imbalance between new production and sinking flux.  
  Address Scripps Institution of Oceanography , University of California at San Diego , La Jolla, CA 92037 , USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-7873 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:27275035; PMCID:PMC4889986 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 90  
Permanent link to this record
 

 
Author Decima, M.; Landry, M.R.; Stukel, M.R.; Lopez-Lopez, L.; Krause, J.W. url  doi
openurl 
  Title Mesozooplankton biomass and grazing in the Costa Rica Dome: amplifying variability through the plankton food web Type $loc['typeJournal Article']
  Year 2016 Publication Journal of Plankton Research Abbreviated Journal J Plankton Res  
  Volume 38 Issue 2 Pages 317-330  
  Keywords Omz; efficiency; food chain; secondary production; trophic transfer  
  Abstract We investigated standing stocks and grazing rates of mesozooplankton assemblages in the Costa Rica Dome (CRD), an open-ocean upwelling ecosystem in the eastern tropical Pacific. While phytoplankton biomass in the CRD is dominated by picophytoplankton (<2-microm cells) with especially high concentrations of Synechococcus spp., we found high mesozooplankton biomass ( approximately 5 g dry weight m-2) and grazing impact (12-50% integrated water column chlorophyll a), indicative of efficient food web transfer from primary producers to higher levels. In contrast to the relative uniformity in water-column chlorophyll a and mesozooplankton biomass, variability in herbivory was substantial, with lower rates in the central dome region and higher rates in areas offset from the dome center. While grazing rates were unrelated to total phytoplankton, correlations with cyanobacteria (negative) and biogenic SiO2 production (positive) suggest that partitioning of primary production among phytoplankton sizes contributes to the variability observed in mesozooplankton metrics. We propose that advection of upwelled waters away from the dome center is accompanied by changes in mesozooplankton composition and grazing rates, reflecting small changes within the primary producers. Small changes within the phytoplankton community resulting in large changes in the mesozooplankton suggest that the variability in lower trophic level dynamics was effectively amplified through the food web.  
  Address Dauphin Island Sea Lab , 101 Bienville Blvd, Dauphin Island, AL 36528 , USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-7873 ISBN Medium  
  Area Expedition Conference  
  Funding PMID:27275033; PMCID:PMC4889985 Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 75  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)