Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Bhardwaj, A.; Misra, V. url  doi
openurl 
  Title The role of air-sea coupling in the downscaled hydroclimate projection over Peninsular Florida and the West Florida Shelf Type $loc['typeJournal Article']
  Year 2019 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 53 Issue 5-6 Pages 2931-2947  
  Keywords  
  Abstract A comparative analysis of two sets of downscaled simulations of the current climate and the future climate projections over Peninsular Florida (PF) and the West Florida Shelf (WFS) is presented to isolate the role of high-resolution air-sea coupling. In addition, the downscaled integrations are also compared with the much coarser, driving global model projection to examine the impact of grid resolution of the models. The WFS region is habitat for significant marine resources, which has both commercial and recreational value. Additionally, the hydroclimatic features of the WFS and PF contrast each other. For example, the seasonal cycle of surface evaporation in these two regions are opposite in phase to one another. In this study, we downscale the Community Climate System Model version 4 (CCSM4) simulations of the late twentieth century and the mid-twenty-first century (with reference concentration pathway 8.5 emission scenario) using an atmosphere only Regional Spectral Model (RSM) at 10 km grid resolution. In another set, we downscale the same set of CCSM4 simulations using the coupled RSM-Regional Ocean Model System (RSMROMS) at 10 km grid resolution. The comparison of the twentieth century simulations suggest significant changes to the SST simulation over WFS from RSMROMS relative to CCSM4, with the former reducing the systematic errors of the seasonal mean SST over all seasons except in the boreal summer season. It may be noted that owing to the coarse resolution of CCSM4, the comparatively shallow bathymetry of the WFS and the sharp coastline along PF is poorly defined, which is significantly rectified at 10 km grid spacing in RSMROMS. The seasonal hydroclimate over PF and the WFS in the twentieth century simulation show significant bias in all three models with CCSM4 showing the least for a majority of the seasons, except in the wet June-July-August (JJA) season. In the JJA season, the errors of the surface hydroclimate over PF is the least in RSMROMS. The systematic errors of surface precipitation and evaporation are more comparable between the simulations of CCSM4 and RSMROMS, while they differ the most in moisture flux convergence. However, there is considerable improvement in RSMROMS compared to RSM simulations in terms of the seasonal bias of the hydroclimate over WFS and PF in all seasons of the year. This suggests the potential rectification impact of air-sea coupling on dynamic downscaling of CCSM4 twentieth century simulations. In terms of the climate projection in the decades of 2041-2060, the RSMROMS simulation indicate significant drying of the wet season over PF compared to moderate drying in CCSM4 and insignificant changes in the RSM projection. This contrasting projection is also associated with projected warming of SSTs along the WFS in RSMROMS as opposed to warming patterns of SST that is more zonal and across the WFS in CCSM4.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1082  
Permanent link to this record
 

 
Author Sun, J.; Wu, Z. url  doi
openurl 
  Title Isolating spatiotemporally local mixed Rossby-gravity waves using multi-dimensional ensemble empirical mode decomposition Type $loc['typeJournal Article']
  Year 2019 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume Issue 3-4 Pages 1383-1405  
  Keywords  
  Abstract Tropical waves have relatively large amplitudes in and near convective systems, attenuating as they propagate away from the area where they are generated due to the dissipative nature of the atmosphere. Traditionally, nonlocal analysis methods, such as those based on the Fourier transform, are applied to identify tropical waves. However, these methods have the potential to lead to the misidentification of local wavenumbers and spatial locations of local wave activities. To address this problem, we propose a new method for analyzing tropical waves, with particular focus placed on equatorial mixed Rossby-gravity (MRG) waves. The new tropical wave analysis method is based on the multi-dimensional ensemble empirical mode decomposition and a novel spectral representation based on spatiotemporally local wavenumber, frequency, and amplitude of waves. We first apply this new method to synthetic data to demonstrate the advantages of the method in revealing characteristics of MRG waves. We further apply the method to reanalysis data (1) to identify and isolate the spatiotemporally heterogeneous MRG waves event by event, and (2) to quantify the spatial inhomogeneity of these waves in a wavenumber-frequency-energy diagram. In this way, we reveal the climatology of spatiotemporal inhomogeneity of MRG waves and summarize it in wavenumber-frequency domain: The Indian Ocean is dominated by MRG waves in the period range of 8–12 days; the western Pacific Ocean consists of almost equal energy distribution of MRG waves in the period ranges of 3–6 and 8–12 days, respectively; and the eastern tropical Pacific Ocean and the tropical Atlantic Ocean are dominated by MRG waves in the period range of 3–6 days. The zonal wavenumbers mostly fall within the band of 4–15, with Indian Ocean has larger portion of higher wavenumber (smaller wavelength components) MRG waves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1093  
Permanent link to this record
 

 
Author Misra, V.; Bhardwaj, A. url  doi
openurl 
  Title Understanding the seasonal variations of Peninsular Florida Type $loc['typeJournal Article']
  Year 2019 Publication Climate Dynamics Abbreviated Journal Clim Dyn  
  Volume 54 Issue 3-4 Pages 1873-1885  
  Keywords  
  Abstract This study accounts for varying lengths of the seasons, which turns out to be an important consideration of climate variability over Peninsular Florida (PF). We introduce an objective definition for the onset and demise of the winter season over relatively homogenous regions within PF: North Florida (NF), Central Florida (CF), Southeast Florida (SeF), and Southwest Florida (SwF). We first define the summer season based on precipitation, and follow this by defining the winter season using surface temperature analysis. As a consequence, of these definitions of the summer and the winter seasons, the lengths of the transition seasons of spring and fall also vary from year to year. The onset date variations have a robust relationship with the corresponding seasonal length anomalies across PF for all seasons. Furthermore, with some exceptions, the onset date variations are associated with corresponding seasonal rainfall and surface temperature anomalies, which makes monitoring the onset date of the seasons a potentially useful predictor of the following evolution of the season. In many of these instances the demise date variations of the season also have a bearing on the preceding seasonal length and seasonal rainfall anomalies. However, we find that variations of the onset and the demise dates are independent of each other across PF and in all seasons. We also find that the iconic ENSO teleconnection over PF is exclusive to the seasonal rainfall anomalies and it does not affect the variations in the length of the winter season. Given these findings, we strongly suggest monitoring and predicting the variations in the lengths of the seasons over PF as it is not only an important metric of climate variability but also beneficial to reduce a variety of risks of impact of anomalous seasonal climate variations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0930-7575 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1098  
Permanent link to this record
 

 
Author Ali, M.; Singh, N.; Kumar, M.; Zheng, Y.; Bourassa, M.; Kishtawal, C.; Rao, C. url  doi
openurl 
  Title Dominant Modes of Upper Ocean Heat Content in the North Indian Ocean Type $loc['typeJournal Article']
  Year 2019 Publication Climate Abbreviated Journal Climate  
  Volume 6 Issue 71 Pages 1 – 8  
  Keywords  
  Abstract The thermal energy needed for the development of hurricanes and monsoons as well as any prolonged marine weather event comes from layers in the upper oceans, not just from the thin layer represented by sea surface temperature alone. Ocean layers have different modes of thermal energy variability because of the different time scales of ocean–atmosphere interaction. Although many previous studies have focused on the influence of upper ocean heat content (OHC) on tropical cyclones and monsoons, no study thus far—particularly in the North Indian Ocean (NIO)—has specifically concluded the types of dominant modes in different layers of the ocean. In this study, we examined the dominant modes of variability of OHC of seven layers in the NIO during 1998–2014. We conclude that the thermal variability in the top 50 m of the ocean had statistically significant semiannual and annual modes of variability, while the deeper layers had the annual mode alone. Time series of OHC for the top four layers were analyzed separately for the NIO, Arabian Sea, and Bay of Bengal. For the surface to 50 m layer, the lowest and the highest values of OHC were present in January and May every year, respectively, which was mainly caused by the solar radiation cycle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2225-1154 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1030  
Permanent link to this record
 

 
Author Laxenaire, R., Speich, S., & Alexandre S url  openurl
  Title Evolution of the thermohaline structure of one Agulhas Ring reconstructed from satellite altimetry and Argo floats. Journal of Geophysical Research Type $loc['typeJournal Article']
  Year 2019 Publication Oceans Abbreviated Journal  
  Volume 124 Issue 12 Pages 8969-9003  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1096  
Permanent link to this record
 

 
Author Bruno-Piverger, R.E. url  openurl
  Title Applying Neural Networks to Simulate Visual Inspection of Observational Weather Data Type $loc['typeJournal Article']
  Year 2019 Publication Florida State University College of Arts and Sciences, Master's Thesis Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1090  
Permanent link to this record
 

 
Author Ardhuin, F.; Chapron, B.; Maes, C.; Romeiser, R.; Gommenginger, C.; Cravatte, S.; Morrow, R.; Donlon, C.; Bourassa, M. url  doi
openurl 
  Title Satellite Doppler observations for the motions of the oceans Type $loc['typeJournal Article']
  Year 2019 Publication Bulletin of the American Meteorological Society Abbreviated Journal Bull. Amer. Meteor. Soc.  
  Volume Issue Pages  
  Keywords  
  Abstract Satellite remote sensing has revolutionized oceanography, starting from sea surface temperature, ocean color, sea level, winds, waves, and the recent addition of sea surface salinity, providing a global view of upper ocean processes. The possible addition of a direct measurement of surface velocities related to currents, winds and waves opens great opportunities for research and applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-0007 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1025  
Permanent link to this record
 

 
Author Bhowmick, S. A.; Agarwal, N.; Ali, M. M.; Kishtawal, C. M.; Sharma, R. url  doi
openurl 
  Title Role of ocean heat content in boosting post-monsoon tropical storms over Bay of Bengal during La-Nina events Type $loc['typeJournal Article']
  Year 2019 Publication Climate Dynamics Abbreviated Journal  
  Volume 52 Issue 12 Pages 7225-7234  
  Keywords La-Niña; Bay of Bengal; Tropical cyclones; Ocean heat content  
  Abstract This study aims to analyze the role of ocean heat content in boosting the post-monsoon cyclonic activities over Bay of Bengal during La-Niña events. In strong La-Niña years, accumulated cyclone energy in Bay of Bengal is much more as compared to any other year. It is observed that during late June to October of moderate to strong La-Nina years, western Pacific is warmer. Sea surface temperature anomaly of western Pacific Ocean clearly indicates the presence of relatively warmer water mass in the channel connecting the Indian Ocean and Pacific Ocean, situated above Australia. Ocean currents transport the heat zonally from Pacific to South eastern Indian Ocean. Excess heat of the southern Indian Ocean is eventually transported to eastern equatorial Indian Ocean through strong geostrophic component of ocean current. By September the northward transport of this excess heat from eastern equatorial Indian Ocean to Bay of Bengal takes place during La-Nina years boosting the cyclonic activities thereafter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ mfield @ Serial 71  
Permanent link to this record
 

 
Author Jeon, C.-H.; Buijsman, M.C.; Wallcraft, A.J.; Shriver, J.F.; Arbic, B.K.; Richman, J.G.; Hogan, P.J. url  doi
openurl 
  Title Improving surface tidal accuracy through two-way nesting in a global ocean model Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 137 Issue Pages 98-113  
  Keywords Two-way nesting; HYCOM; Barotropic tides; OASIS3-MCT; FES2014; TPXO9-atlas  
  Abstract In global ocean simulations, forward (non-data-assimilative) tide models generally feature large sea-surface-height errors near Hudson Strait in the North Atlantic Ocean with respect to altimetry-constrained tidal solutions. These errors may be associated with tidal resonances that are not well resolved by the complex coastal-shelf bathymetry in low-resolution simulations. An online two-way nesting framework has been implemented to improve global surface tides in the HYbrid Coordinate Ocean Model (HYCOM). In this framework, a high-resolution child domain, covering Hudson Strait, is coupled with a relatively low-resolution parent domain for computational efficiency. Data such as barotropic pressure and velocity are exchanged between the child and parent domains with the external coupler OASIS3-MCT. The developed nesting framework is validated with semi-idealized basin-scale model simulations. The M2 sea-surface heights show very good accuracy in the one-way and two-way nesting simulations in Hudson Strait, where large tidal elevations are observed. In addition, the mass and tidal energy flux are not adversely impacted at the nesting boundaries in the semi-idealized simulations. In a next step, the nesting framework is applied to a realistic global tide simulation. In this simulation, the resolution of the child domain (1/75°) is three times as fine as that of the parent domain (1/25°). The M2 sea-surface-height root-mean-square errors with tide gauge data and the altimetry-constrained global FES2014 and TPXO9-atlas tidal solutions are evaluated for the nesting and no-nesting solutions. The better resolved coastal bathymetry and the finer grid in the child domain improve the local tides in Hudson Strait and Bay, and the back-effect of the coastal tides induces an improvement of the barotropic tides in the open ocean of the Atlantic.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1034  
Permanent link to this record
 

 
Author Timko, P.G.; Arbic, B.K.; Hyder, P.; Richman, J.G.; Zamudio, L.; O'Dea, E.; Wallcraft, A.J.; Shriver, J.F. url  doi
openurl 
  Title Assessment of shelf sea tides and tidal mixing fronts in a global ocean model Type $loc['typeJournal Article']
  Year 2019 Publication Ocean Modelling Abbreviated Journal Ocean Modelling  
  Volume 136 Issue Pages 66-84  
  Keywords HYCOM; tides; seasonal tidal mixing  
  Abstract Tidal mixing fronts, which represent boundaries between stratified and tidally mixed waters, are locations of enhanced biological activity. They occur in summer shelf seas when, in the presence of strong tidal currents, mixing due to bottom friction balances buoyancy production due to seasonal heat flux. In this paper we examine the occurrence and fidelity of tidal mixing fronts in shelf seas generated within a global 3-dimensional simulation of the HYbrid Coordinate Ocean Model (HYCOM) that is simultaneously forced by atmospheric fields and the astronomical tidal potential. We perform a first order assessment of shelf sea tides in global HYCOM through comparison of sea surface temperature, sea surface tidal elevations, and tidal currents with observations. HYCOM was tuned to minimize errors in M2 sea surface heights in deep water. Over the global coastal and shelf seas (depths <200&#8239;m) the area-weighted root mean square error of the M2 sea surface amplitude in HYCOM represents 35% of the 50&#8239;cm root mean squared M2 sea surface amplitude when compared to satellite constrained models TPXO8 and FES2014. HYCOM and the altimeter constrained tidal models TPXO8 and FES2014 exhibit similar skill in reproducing barotropic tidal currents estimated from in-situ current meter observations. Through comparison of a global HYCOM simulation with tidal forcing to a global HYCOM simulation with no tides, and also to previous regional studies of tidal mixing fronts in shelf seas, we demonstrate that HYCOM with embedded tides exhibits quite high skill in reproducing known tidal mixing fronts in shelf seas. Our results indicate that the amount of variability in the location of the tidal mixing fronts in HYCOM, estimated using the Simpson-Hunter parameter, is consistent with previous studies when the differences in the net downward heat flux, on a global scale, are taken into account. We also provide evidence of tidal mixing fronts on the North West Australian Shelf for which we have been unable to find references in the existing scientific literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-5003 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 1032  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2022 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)