Skip to main content
Skip to main content

COAPS Virtual Library (Publications)

Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Deng, J.; Wu, Z.; Zhang, M.; Huang, N.E.; Wang, S.; Qiao, F. url  doi
openurl 
  Title Using Holo-Hilbert spectral analysis to quantify the modulation of Dansgaard-Oeschger events by obliquity Type $loc['typeJournal Article']
  Year 2018 Publication Quaternary Science Reviews Abbreviated Journal Quaternary Science Reviews  
  Volume 192 Issue Pages 282-299  
  Keywords Pleistocene; Paleoclimatology; Greenland; Antarctica; Data treatment; Data analysis; Dansgaard-oeschger (DO) events; Obliquity forcing; Phase preference; Holo-hilbert spectral analysis; Amplitude modulation; EMPIRICAL MODE DECOMPOSITION; GREENLAND ICE-CORE; NONSTATIONARY TIME-SERIES; ABRUPT CLIMATE-CHANGE; LAST GLACIAL PERIOD; NORTH-ATLANTIC; MILLENNIAL-SCALE; RECORDS; VARIABILITY; CYCLE  
  Abstract Astronomical forcing (obliquity and precession) has been thought to modulate Dansgaard-Oeschger (DO) events, yet the detailed quantification of such modulations has not been examined. In this study, we apply the novel Holo-Hilbert Spectral Analysis (HHSA) to five polar ice core records, quantifying astronomical forcing's time-varying amplitude modulation of DO events and identifying the preferred obliquity phases for large amplitude modulations. The unique advantages of HHSA over the widely used windowed Fourier spectral analysis for quantifying astronomical forcing's nonlinear modulations of DO events is first demonstrated with a synthetic data that closely resembles DO events recorded in Greenland ice cores (NGRIP, GRIP, and GISP2 cores on GICC05 modelext timescale). The analysis of paleoclimatic proxies show that statistically significantly more frequent DO events, with larger amplitude modulation in the Greenland region, tend to occur in the decreasing phase of obliquity, especially from its mean value to its minimum value. In the eastern Antarctic, although statistically significantly more DO events tend to occur in the decreasing obliquity phase in general, the preferred phase of obliquity for large amplitude modulation on DO events is a segment of the increasing phase near the maximum obliquity, implying that the physical mechanisms of DO events may be different for the two polar regions. Additionally, by using cross-spectrum and magnitude-squared analyses, Greenland DO mode at a timescale of about 1400 years leads the Antarctic DO mode at the same timescale by about 1000 years. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0277-3791 ISBN Medium  
  Area Expedition Conference  
  Funding Approved $loc['no']  
  Call Number COAPS @ user @ Serial 971  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:

2000 Levy Avenue
Building A, Suite 292
Tallahassee, FL 32306-2741
Phone: (850) 644-4581
Fax: (850) 644-4841
contact@coaps.fsu.edu

© 2024 Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University

Center for Ocean-Atmospheric Prediction Studies (COAPS)